Letter | Published:

Detecting single infrared photons with 93% system efficiency

Nature Photonics volume 7, pages 210214 (2013) | Download Citation

Abstract

Single-photon detectors1 at near-infrared wavelengths with high system detection efficiency (>90%), low dark count rate (<1 c.p.s.), low timing jitter (<100 ps) and short reset time (<100 ns) would enable landmark experiments in a variety of fields2,3,4,5,6. Although some of the existing approaches to single-photon detection fulfil one or two of the above specifications1, to date, no detector has met all of the specifications simultaneously. Here, we report on a fibre-coupled single-photon detection system that uses superconducting nanowire single-photon detectors7 and closely approaches the ideal performance of single-photon detectors. Our detector system has a system detection efficiency (including optical coupling losses) greater than 90% in the wavelength range λ = 1,520–1,610 nm, with a device dark count rate (measured with the device shielded from any background radiation) of 1 c.p.s., timing jitter of 150 ps full-width at half-maximum (FWHM) and reset time of 40 ns.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Invited Review Article: Single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).

  2. 2.

    & Detector inefficiencies in the Einstein–Podolsky–Rosen experiment. Phys. Rev. D 35, 3831–3835 (1987).

  3. 3.

    et al. Quantum computers. Nature 464, 45–53 (2010).

  4. 4.

    & Quantum communication. Nature Photon. 1, 165–171 (2007).

  5. 5.

    et al. Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm. J. Biomed. Opt. 16, 096012 (2011).

  6. 6.

    , & Versatile mobile lidar system for environmental monitoring. Appl. Opt. 42, 3583–3594 (2003).

  7. 7.

    et al. Picosecond superconducting single-photon optical detector. Appl. Phys. Lett. 79, 705–707 (2001).

  8. 8.

    , & Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25, 063001 (2012).

  9. 9.

    et al. Single photon counting from individual nanocrystals in the infrared. Nano Lett. 12, 2953–2958 (2012).

  10. 10.

    Transition Metal Carbides and Nitrides Ch. 7 (Academic Press, 1971).

  11. 11.

    et al. High quality superconducting NbN thin films on GaAs. Supercond. Sci. Technol. 22, 095013 (2009).

  12. 12.

    et al. Constriction-limited detection efficiency of superconducting nanowire single-photon detectors. Appl. Phys. Lett. 90, 101110 (2007).

  13. 13.

    et al. Single-photon detectors based on ultra-narrow superconducting nanowires. Nano Lett. 11, 2048–2053 (2011).

  14. 14.

    , , & Superconducting a-WxSi1−x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm. Appl. Phys. Lett. 98, 251105 (2011).

  15. 15.

    , & Quantum detection by current carrying superconducting film. Physica C 351, 349–356 (2001).

  16. 16.

    , & Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors. Phys. Rev. B 85, 014505 (2012).

  17. 17.

    et al. Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent. Opt. Express 19, 9102–9110 (2011).

  18. 18.

    , & Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032–3040 (2008).

  19. 19.

    et al. in Proceedings of the Quantum Electronics and Laser Science Conference QTu3E.1 (Optical Society of America, 2012).

  20. 20.

    et al. Optical properties of superconducting nanowire single-photon detectors. Opt. Express 16, 10750–10761 (2008).

  21. 21.

    et al. Origin of intrinsic dark count in superconducting nanowire single-photon detectors. Appl. Phys. Lett. 99, 161105 (2011).

  22. 22.

    et al. Superconducting single photon detectors with minimized polarization dependence. Appl. Phys. Lett. 93, 161102 (2008).

  23. 23.

    et al. Optical and transport properties of ultrathin NbN films and nanostructures. Phys. Rev. B 80, 054510 (2009).

  24. 24.

    et al. Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors. Eur. Phys. J. Appl. Phys. 47, 10701 (2009).

  25. 25.

    Experimental Techniques for Low-Temperature Measurements: Cryostat Design, Material Properties, and Superconductor Critical-Current Testing (Oxford Univ. Press, 2007).

  26. 26.

    & Fabrication and characterization of superconducting NbN nanowire single photon detectors. IEEE Trans. Appl. Supercond. 17, 306–309 (2007).

  27. 27.

    et al. Kinetic-inductance-limited reset time of superconducting nanowire photon counters. Appl. Phys. Lett. 88, 111116 (2006).

  28. 28.

    et al. A cascade switching superconducting single photon detector. Appl. Phys. Lett. 91, 262509 (2007).

  29. 29.

    , , , & Afterpulsing and instability in superconducting nanowire avalanche photodetectors. Appl. Phys. Lett. 100, 112601 (2012).

  30. 30.

    et al. Efficient single photon detection from 500 nanometer to 5 micron wavelength. Nano Lett. 12, 4799–4804 (2012).

Download references

Acknowledgements

The authors thank R. M. Briggs, S. D. Dyer, W. H. Farr, J. Gao, M. Green, E. Grossman, P. D. Hale, R. W. Leonhardt, I. Levin and R. E. Muller for technical support, and S. Bradley, B. Calkins, A. Migdall and M. Stevens for scientific discussions. Part of this work was supported by the Defense Advanced Research Projects Agency (Information in a Photon programme). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Affiliations

  1. National Institute of Standards and Technology, 325 Broadway, MC 815.04, Boulder, Colorado 80305, USA

    • F. Marsili
    • , V. B. Verma
    • , S. Harrington
    • , A. E. Lita
    • , T. Gerrits
    • , I. Vayshenker
    • , B. Baek
    • , R. P. Mirin
    •  & S. W. Nam
  2. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA

    • J. A. Stern
    •  & M. D. Shaw

Authors

  1. Search for F. Marsili in:

  2. Search for V. B. Verma in:

  3. Search for J. A. Stern in:

  4. Search for S. Harrington in:

  5. Search for A. E. Lita in:

  6. Search for T. Gerrits in:

  7. Search for I. Vayshenker in:

  8. Search for B. Baek in:

  9. Search for M. D. Shaw in:

  10. Search for R. P. Mirin in:

  11. Search for S. W. Nam in:

Contributions

F.M., V.B.V., J.A.S., A.E.L., B.B., R.P.M. and S.W.N. conceived and designed the experiments. F.M., V.B.V., J.A.S., S.H. and T.G. performed the experiments. F.M. and S.H. analysed the data. J.A.S., I.V., M.D.S. and S.W.N. contributed materials/analysis tools. F.M. wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to F. Marsili or S. W. Nam.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2013.13

Further reading