Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Towards isolated attosecond pulses at megahertz repetition rates

Abstract

The strong-field process of high-harmonic generation is the foundation for generating isolated attosecond pulses1, which are the fastest controllable events ever induced. This coherent extreme-ultraviolet radiation has become an indispensable tool for resolving ultrafast motion in atoms and molecules2,3. Despite numerous spectacular developments in the new field of attoscience2,3,4, the low data-acquisition rates imposed by low-repetition-rate (maximum of 3 kHz) laser systems5 hamper the advancement of these sophisticated experiments. Consequently, the availability of high-repetition-rate sources will overcome a major obstacle in this young field. Here, we present the first megahertz-level source of extreme-ultraviolet continua with evidence of isolated attosecond pulses using a fibre laser-pumped optical parametric amplifier6 for high-harmonic generation at 0.6 MHz. This 200-fold increase in repetition rate will enable and promote a vast variety of new applications, such as attosecond-resolution coincidence and photoelectron spectroscopy7, or even video-rate acquisition for spatially resolved pump–probe measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up of the XUV source.
Figure 2: HHG at 150 kHz repetition rate.
Figure 3: Spectral selection of cutoff harmonics.
Figure 4: Numerical simulation of the HHG process.
Figure 5: HHG at 0.6 MHz repetition rate.

Similar content being viewed by others

References

  1. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  2. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  3. Sansone, G., Calegari, F. & Nisoli, M. Attosecond technology and science. IEEE J. Sel. Top. Quantum Electron. 18, 507–519 (2012).

    Article  ADS  Google Scholar 

  4. Sansone, G., Poletto, L. & Nisoli, M. High-energy attosecond light sources. Nature Photon. 5, 655–663 (2011).

    Article  ADS  Google Scholar 

  5. Schultze, M. et al. Powerful 170-attosecond XUV pulses generated with few-cycle laser pulses and broadband multilayer optics. New J. Phys. 9, 243 (2007).

    Article  ADS  Google Scholar 

  6. Rothhardt, J., Demmler, S., Hädrich, S., Limpert, J. & Tünnermann, A. Octave-spanning OPCPA system delivering CEP-stable few-cycle pulses and 22 W of average power at 1 MHz repetition rate. Opt. Express 20, 10870–10878 (2012).

    Article  ADS  Google Scholar 

  7. Neppl, S. et al. Attosecond time-resolved photoemission from core and valence states of magnesium. Phys. Rev. Lett. 109, 22–26 (2012).

    Article  Google Scholar 

  8. Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    Article  Google Scholar 

  9. Corkum, P., Burnett, N. & Ivanov, M. Y. Subfemtosecond pulses. Opt. Lett. 19, 1870–1872 (1994).

    Article  ADS  Google Scholar 

  10. Antoine, P., L'Huillier, A. & Lewenstein, M. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

    Article  ADS  Google Scholar 

  11. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  12. Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    Article  ADS  Google Scholar 

  13. Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    Article  ADS  Google Scholar 

  14. Miaja-Avila, L. et al. Direct measurement of core-level relaxation dynamics on a surface-adsorbate system. Phys. Rev. Lett. 101, 46101 (2008).

    Article  ADS  Google Scholar 

  15. Sandberg, R. L. et al. Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams. Phys. Rev. Lett. 99, 098103 (2007).

    Article  ADS  Google Scholar 

  16. Christov, I. P., Murnane, M. M. & Kapteyn, H. C. High-harmonic generation of attosecond pulses in the ‘single-cycle' regime. Phys. Rev. Lett. 78, 1251–1254 (1997).

    Article  ADS  Google Scholar 

  17. Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    Article  ADS  Google Scholar 

  18. Zair, A. et al. Time-resolved measurements of high order harmonics confined by polarization gating. Appl. Phys. B 78, 869–872 (2004).

    Article  ADS  Google Scholar 

  19. Lindner, F., Stremme, W., Schätzel, M. & Grasbon, F. High-order harmonic generation at a repetition rate of 100 kHz. Phys. Rev. A 68, 013814 (2003).

    Article  ADS  Google Scholar 

  20. Südmeyer, T. et al. Femtosecond laser oscillators for high-field science. Nature Photon. 2, 599–604 (2008).

    Article  Google Scholar 

  21. Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).

    Article  ADS  Google Scholar 

  22. Henke, B. L., Gullikson, E. M. & Davis, J. C. X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. Atom. Data Nucl. Data Tables 54, 181–342 (1993).

    Article  ADS  Google Scholar 

  23. Salières, P., L'Huillier, A. & Lewenstein, M. Coherence control of high-order harmonics. Phys. Rev. Lett. 74, 3776–3779 (1995).

    Article  ADS  Google Scholar 

  24. Zaïr, A. et al. Quantum path interferences in high-order harmonic generation. Phys. Rev. Lett. 100, 143902 (2008).

    Article  ADS  Google Scholar 

  25. Nisoli, M. et al. Effects of carrier-envelope phase differences of few-optical-cycle light pulses in single-shot high-order-harmonic spectra. Phys. Rev. Lett. 91, 213905 (2003).

    Article  ADS  Google Scholar 

  26. Sola, I. J. et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nature Phys. 2, 319–322 (2006).

    Article  ADS  Google Scholar 

  27. Sansone, G., Benedetti, E., Vozzi, C., Stagira, S. & Nisoli, M. Attosecond metrology in the few-optical-cycle regime. New J. Phys. 10, 025006 (2008).

    Article  ADS  Google Scholar 

  28. Mikkelsen, A. et al. Photoemission electron microscopy using extreme ultraviolet attosecond pulse trains. Rev. Sci. Instrum. 80, 123703 (2009).

    Article  ADS  Google Scholar 

  29. Demmler, S. et al. Control of nonlinear spectral phase induced by ultra-broadband optical parametric amplification. Opt. Lett. 37, 3933–3935 (2012).

    Article  ADS  Google Scholar 

  30. Iaconis, C. & Walmsley, I. A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998).

    Article  ADS  Google Scholar 

  31. Baltuska, A. et al. Phase-controlled amplification of few-cycle laser pulses. IEEE J. Sel. Top. Quantum Electron. 9, 972–989 (2003).

    Article  ADS  Google Scholar 

  32. Hädrich, S. et al. Improving carrier-envelope phase stability in optical parametric chirped-pulse amplifiers by control of timing jitter. Opt. Lett. 37, 4910–4912 (2012).

    Article  ADS  Google Scholar 

  33. Brabec, T. & Krausz, F. Intense few-cycle laser fields: frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545–591 (2000).

    Article  ADS  Google Scholar 

  34. Gaarde, M. B., Tate, J. L. & Schafer, K. J. Macroscopic aspects of attosecond pulse generation. J. Phys. B 41, 132001 (2008).

    Article  ADS  Google Scholar 

  35. Lewenstein, M. et al. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research (BMBF), the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 240460, UK-EPSRC project EP/J002348/1 and UK Royal Society project IE121529. The authors thank E. Cormier for providing initial simulations and for fruitful discussions. L.C. thanks the Imperial College High Performance Computing Service for the use of their facilities.

Author information

Authors and Affiliations

Authors

Contributions

J.L. conceived the initial idea. The experiments were planned, designed and performed by M.K., S.D., S.H. and J.R. with support from A.Z., L.C. and J.L. The experimental data were analysed by M.K. and S.H, and L.C. and A.Z. contributed the simulations and supported the interpretation of the results. J.L. and A.T. supervised the project and acquired funding. All authors contributed to the manuscript.

Corresponding author

Correspondence to Manuel Krebs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krebs, M., Hädrich, S., Demmler, S. et al. Towards isolated attosecond pulses at megahertz repetition rates. Nature Photon 7, 555–559 (2013). https://doi.org/10.1038/nphoton.2013.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing