Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Towards quantum-dot arrays of entangled photon emitters

Abstract

To make photonic quantum information a reality1,2, a number of extraordinary challenges need to be overcome. One challenge is to achieve large arrays of reproducible ‘entangled’ photon generators, while maintaining compatibility for integration with optical devices and detectors3,4,5. Semiconductor quantum dots are potentially ideal for this as they allow photons to be generated on demand6,7 without relying on probabilistic processes8,9. Nevertheless, most quantum-dot systems are limited by their intrinsic lack of symmetry, which allows only a small number (typically 1 out of 100, or worse) of good dots to be achieved per chip. The recent retraction of Mohan et al.10 seemed to question the very possibility of simultaneously achieving site control and high symmetry. Here, we show that with a new family of (111)-grown pyramidal site-controlled InGaAs1–δNδ quantum dots it is possible to overcome previous hurdles and obtain areas with up to 15% of polarization-entangled photon emitters, with fidelities as high as 0.721 ± 0.043.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pyramidal site-controlled quantum dots with high symmetry.
Figure 2: Polarization-entangled photons.
Figure 3: High density of quantum dots emitting polarization-entangled photons.

Similar content being viewed by others

References

  1. Steane, A. Quantum computing. Rep. Prog. Phys. 61, 117–173 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  2. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  3. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. Y. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  ADS  Google Scholar 

  4. Politi, A., Matthews, J. C. F., Thompson, M. G. & O'Brien, J. L. Integrated quantum photonics. IEEE J. Sel. Top Quant. Electron. 15, 1673–1684 (2009).

    Article  ADS  Google Scholar 

  5. O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

    Article  ADS  Google Scholar 

  6. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    Article  ADS  Google Scholar 

  7. Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006).

    Article  ADS  Google Scholar 

  8. Horn, R. et al. Monolithic source of photon pairs. Phys. Rev. Lett. 108, 153605 (2012).

    Article  ADS  Google Scholar 

  9. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  10. Mohan, A. et al. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nature Photon. 4, 302–306 (2010).

    Article  Google Scholar 

  11. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    Article  ADS  Google Scholar 

  12. Stevenson, R. M. et al. Evolution of entanglement between distinguishable light states. Phys. Rev. Lett. 101, 170501 (2008).

    Article  ADS  Google Scholar 

  13. Schliwa, A., Winkelnkemper, M., Lochmann, A., Stock, E. & Bimberg, D. In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs. Phys. Rev. B 80, 161307 (2009).

    Article  ADS  Google Scholar 

  14. Singh, R. & Bester, G. Nanowire quantum dots as an ideal source of entangled photon pairs. Phys. Rev. Lett. 103, 063601 (2009).

    Article  ADS  Google Scholar 

  15. Oberli, D. Y. et al. Coulomb correlations of charged excitons in semiconductor quantum dots. Phys. Rev. B 80, 165312 (2009).

    Article  ADS  Google Scholar 

  16. Juska, G., Dimastrodonato, V., Mereni, L. O., Gocalinska, A. & Pelucchi, E. A study of nitrogen incorporation in pyramidal site-controlled quantum dots. Nanoscale Res. Lett. 6, 567 (2011).

    Article  ADS  Google Scholar 

  17. Dimastrodonato, V., Mereni, L. O., Juska, G. & Pelucchi, E. Impact of nitrogen incorporation on pseudomorphic site-controlled quantum dots grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 97, 072115 (2010).

    Article  ADS  Google Scholar 

  18. Young, R. J. et al. Inversion of exciton level splitting in quantum dots. Phys. Rev. B 72, 113305 (2005).

    Article  ADS  Google Scholar 

  19. Hudson, A. J. et al. Coherence of an entangled exciton–photon state. Phys. Rev. Lett. 99, 266802 (2007).

    Article  ADS  Google Scholar 

  20. Ghali, M., Ohtani, K., Ohno, Y. & Ohno, H. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Nature Commun. 3, 661 (2012).

    Article  ADS  Google Scholar 

  21. Stevenson, R. M. et al. Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett. 108, 040503 (2012).

    Article  ADS  Google Scholar 

  22. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  ADS  Google Scholar 

  23. Hill, S. & Wootters, W. K. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997).

    Article  ADS  Google Scholar 

  24. Hafenbrak, R. et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys. 9, 315 (2007).

    Article  ADS  Google Scholar 

  25. Peres, A. Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  26. Trotta, R. et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Phys. Rev. Lett. 109, 147401 (2012).

    Article  ADS  Google Scholar 

  27. Dimastrodonato, V., Mereni, L. O., Young, R. J. & Pelucchi, E. AlGaAs/GaAs/AlGaAs quantum wells as a sensitive tool for the MOVPE reactor environment. J. Cryst. Growth 312, 3057–3062 (2010).

    Article  ADS  Google Scholar 

  28. Pelucchi, E. et al. Decomposition, diffusion, and growth rate anisotropies in self-limited profiles during metalorganic vapor-phase epitaxy of seeded nanostructures. Phys. Rev. B 83, 205409 (2011).

    Article  ADS  Google Scholar 

  29. Dimastrodonato, V., Pelucchi, E. & Vvedenski, D. Self-limiting evolution of seeded quantum wires and dots on patterned substrates. Phys. Rev. Lett. 108, 256102 (2012).

    Article  ADS  Google Scholar 

  30. Mereni, L. O., Dimastrodonato, V., Young, R. J. & Pelucchi, E. A site-controlled quantum dot system offering both high uniformity and spectral purity. Appl. Phys. Lett. 94, 223121 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was partly enabled by the Irish Higher Education Authority Program for Research in Third Level Institutions (2007-2011) via the INSPIRE programme, by Science Foundation Ireland (grants 05/IN.1/I25, 10/IN.1/I3000 and 08/RFP/MTR/1659) and EU FP7 under the Marie Curie Reintegration Grant (PERG07-GA-2010-268300). We thank K. Thomas for his support with the MOVPE system and R.J. Young for his essential help in setting up the correlation setup in the early stages of this project.

Author information

Authors and Affiliations

Authors

Contributions

G.J. carried out optical characterization of the samples and data analysis, and wrote the manuscript with E.P. L.O.M. assisted in optical characterization and data analysis. V.D. and A.G. participated in the production of the samples, processing and microscopy characterization. E.P. conceived the study, participated in its design and coordination, and contributed to writing the manuscript. All authors commented on the final manuscript.

Corresponding author

Correspondence to Gediminas Juska.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 891 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juska, G., Dimastrodonato, V., Mereni, L. et al. Towards quantum-dot arrays of entangled photon emitters. Nature Photon 7, 527–531 (2013). https://doi.org/10.1038/nphoton.2013.128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.128

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing