Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers

Abstract

Recently, few-femtosecond pulses have become available at hard X-ray free-electron lasers. Coupled with the available sub-10 fs optical pulses, investigations into few-femtosecond dynamics are not far off. However, achieving sufficient synchronization between optical lasers and X-ray pulses continues to be challenging. We report a ‘measure-and-sort’ approach, which achieves sub-10 fs root-mean-squared (r.m.s.) error measurement at hard X-ray FELs, far beyond the 100–200 fs r.m.s. jitter limitations. This timing diagnostic, now routinely available at the Linac Coherent Light Source (LCLS), is based on ultrafast free-carrier generation in optically transparent materials. Correlation between two independent measurements enables unambiguous demonstration of 6 fs r.m.s. error in reporting the optical/X-ray delay, with single shot error suggesting the possibility of reaching few-femtosecond resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sketch of the experimental set-up.
Figure 2: Single shot measurement on Si3N4 membrane.
Figure 3: Correlation of spectral and spatial encoding timing tools.
Figure 4: Optically excited coherent A1g phonon mode of bismuth.

Similar content being viewed by others

References

  1. Zewail, A. H. Femtochemistry. Past, present, and future. Pure Appl. Chem. 72, 2219–2231 (2000).

    Article  Google Scholar 

  2. Barty, A. et al. Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nature Photon. 2, 415–419 (2008).

    Article  ADS  Google Scholar 

  3. Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  4. Glownia, J. M. et al. Time-resolved pump–probe experiments at the LCLS. Opt. Express 18, 17620–17630 (2010).

    Article  ADS  Google Scholar 

  5. Bionta, M. R. et al. Spectral encoding of X-ray/optical relative delay. Opt. Express 19, 21855–21865 (2011).

    Article  ADS  Google Scholar 

  6. Maltezopoulos, T. et al. Single-shot timing measurement of extreme-ultraviolet free-electron laser pulses. New J. Phys. 10, 033026 (2008).

    Article  ADS  Google Scholar 

  7. Löhl, F. et al. Electron bunch timing with femtosecond precision in a superconducting free-electron laser. Phys. Rev. Lett. 104, 144801 (2010).

    Article  ADS  Google Scholar 

  8. Meyer, M. et al. Two-color photoionization in XUV free-electron and visible laser fields. Phys. Rev. A 74, 011401(R) (2006).

    Article  ADS  Google Scholar 

  9. Azima, A. et al. Time-resolved pump–probe experiments beyond the jitter limitations at FLASH. Appl. Phys. Lett. 94, 144102 (2009).

    Article  ADS  Google Scholar 

  10. Fritz, D. M. et al. Ultrafast bond softening in bismuth: mapping a solid's interatomic potential with X-rays. Science 315, 633–636 (2007).

    Article  ADS  Google Scholar 

  11. Tavella, F., Stojanovic, N., Geloni, G. & Gensch, M. Few-femtosecond timing at fourth-generation X-ray light sources. Nature Photon. 5, 162–165 (2011).

    Article  ADS  Google Scholar 

  12. Righini, R. Ultrafast optical Kerr effect in liquids and solids. Science 262, 1386–1390 (1993).

    Article  ADS  Google Scholar 

  13. Teubner, U., Wagner, U. & Förster, E. Sub-10 fs gating of optical pulses. J. Phys. B 34, 2993–3002 (2001).

    Article  ADS  Google Scholar 

  14. Thaury, C. et al. Plasma mirrors for ultrahigh-intensity optics. Nature Phys. 3, 424–429 (2007).

    Article  ADS  Google Scholar 

  15. Gahl, C. et al. A femtosecond X-ray/optical cross-correlator. Nature Photon. 2, 165–169 (2008).

    Article  ADS  Google Scholar 

  16. Schorb, S. et al. X-ray optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser. Appl. Phys. Lett. 100, 121107 (2012).

    Article  ADS  Google Scholar 

  17. Beye, M. et al. X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution. Appl. Phys. Lett. 100, 121108 (2012).

    Article  ADS  Google Scholar 

  18. Ziaja, B., London, R. A. & Hajdu, J. Unified model of secondary electron cascades in diamond. J. Appl. Phys. 97, 064905 (2005).

    Article  ADS  Google Scholar 

  19. Krupin, O. et al. Temporal cross-correlation of X-ray free electron and optical lasers using soft X-ray pulse induced transient reflectivity. Opt. Express 20, 11396–11406 (2012).

    Article  ADS  Google Scholar 

  20. Moeller, S. et al. Photon beamlines and diagnostics at LCLS. Nucl. Instrum. Methods 635, S6–S11 (2011).

    Article  Google Scholar 

  21. Düsterer, S. et al. Femtosecond X-ray pulse length characterization at the Linac Coherent Light Source free-electron laser. New J. Phys. 13, 093024 (2011).

    Article  ADS  Google Scholar 

  22. Sokolowski-Tinten, K. et al. Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature Phys. 422, 287–289 (2003).

    Article  ADS  Google Scholar 

  23. Ziaja, B. & Medvedev, N. Modelling ultrafast transitions within laser-irradiated solids. High Ener. Dens. Phys. 8, 18–29 (2012).

    Article  ADS  Google Scholar 

  24. Medvedev, N. & Rethfeld, B. Transient dynamics of the electronic subsystem of semiconductors irradiated with an ultrashort vacuum ultraviolet laser pulse. New J. Phys. 12, 073037 (2010).

    Article  ADS  Google Scholar 

  25. Medvedev, N., Zastrau, U., Förster, E., Gericke, D. O. & Rethfeld, B. Short-time electron dynamics in aluminum excited by femtosecond extreme ultraviolet radiation. Phys. Rev. Lett. 107, 165003 (2011).

    Article  ADS  Google Scholar 

  26. Medvedev, N. & Rethfeld, B. Electron kinetics in semiconductors and metals irradiated with VUV–XUV femtosecond laser pulses. Proc. SPIE 8077, 80770Q (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge important scientific input from H-J. Lee, B. Nagler and E. Galtier. The authors also thank DESY and LCLS technicians for their support. This research was carried out at LCLS at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the US Department of Energy Office of Science by Stanford University.

Author information

Authors and Affiliations

Authors

Contributions

M.H. and M.Ca. designed the research. R.C. proposed the addition of the spectral encoding timing tool. M.H., M.Ca., R.C., M.R.B., D.F., M.Ch., D.Z., D.M.F., S.T. and H.T.L. set up the experiment and performed data collection. M.Ca. performed data analysis. N.M. and B.Z. performed non-equilibrium Monte Carlo simulations. M.H. and M.Ca. wrote the paper, with extensive suggestions from R.C., M.R.B. and N.M. and contributions from all other authors.

Corresponding authors

Correspondence to M. Harmand or M. Cammarata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7763 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harmand, M., Coffee, R., Bionta, M. et al. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nature Photon 7, 215–218 (2013). https://doi.org/10.1038/nphoton.2013.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.11

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing