Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit

Abstract

Kerr nonlinearity imposes a limit on the achievable transmission performance and capacity of optical fibre communication links. We show that the nonlinear distortions of a pair of phase-conjugated twin waves are essentially anticorrelated, so cancellation of signal-to-signal nonlinear interactions can be achieved by coherently superimposing the twin waves at the end of the transmission line. We demonstrate that by applying this approach to fibre communication, nonlinear distortions can be reduced by >8.5 dB. In dispersive nonlinear transmission, the nonlinearity cancellation additionally requires a dispersion-symmetry condition that can be satisfied by appropriately predispersing the signals. By using these techniques we succeed in transmitting a 400 Gb s−1 superchannel over 12,800 km of fibre. We further show a connection between the nonlinearity cancellation and a nonlinear noise squeezing effect. The concept of using phase-conjugated twin waves to suppress nonlinear interactions may prove beneficial in other physical systems governed by the nonlinear Schrödinger equation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Illustration of nonlinearity cancellation based on PCTWs and comparison with ML-PC.
Figure 2: Experimental observation of nonlinearity cancellation in non-dispersive transmission.
Figure 3: Experimental observation of nonlinearity cancellation in highly dispersive transmission.
Figure 4: Experimentally observed connection between nonlinearity cancellation and nonlinear noise squeezing.
Figure 5: Experimental verification of improved nonlinear tolerance to interchannel impairments.
Figure 6: Superchannel transmission with improved nonlinear transmission performance provided by PCTW.

References

  1. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  MathSciNet  Google Scholar 

  2. Chraplyvy, A. R. The coming capacity crunch, in Proceedings of the 2009 European Conference on Optical Communication (Vienna, Austria), Plenary Talk (2009).

  3. Richardson, D. J. Filling the light pipe. Science 330, 327−328 (2010).

    Article  ADS  Google Scholar 

  4. Mitra, P. P. & Stark, J. B. Nonlinear limits to the information capacity of optical fibre communications. Nature 411, 1027–1030 (2001).

    Article  ADS  Google Scholar 

  5. Essiambre, R-J., Foschini, G. J., Kramer, G. & Winzer, P. J. Capacity limits of information transport in fiber-optic networks. Phys. Rev. Lett. 101, 163901 (2008).

    Article  ADS  Google Scholar 

  6. Shieh, W. & Chen, X. Information spectral efficiency and launch power density limits due to fiber nonlinearity for coherent optical OFDM system. IEEE Photon. J. 3, 158–173 (2011).

    Article  ADS  Google Scholar 

  7. Liu, X., Wei, X., Slusher, R. E. & McKinstrie, C. J. Improving transmission performance in differential phase-shift-keyed systems by use of lumped nonlinear phase-shift compensation. Opt. Lett. 27, 1616–1618 (2002).

    Article  ADS  Google Scholar 

  8. Ho, K-P. & Kahn, J. M. Electronic compensation technique to mitigate nonlinear phase noise. J. Lightwave Technol. 22, 779–783 (2004).

    Article  ADS  Google Scholar 

  9. Roberts, K., Li, C., Strawczynski, L. & O'Sullivan, M. Electronic precompensation of optical nonlinearity. IEEE Photon. Technol. Lett. 18, 403–405 (2006).

    Article  ADS  Google Scholar 

  10. Johannisson, P., Sjödin, M., Karlsson, M., Tipsuwannakul, E. & Andrekson, P. A. Cancellation of nonlinear phase distortion in self-homodyne coherent systems. IEEE Photon. Technol. Lett. 22, 802–804 (2010).

    Article  ADS  Google Scholar 

  11. Ip, E. & Kahn, J. M. Compensation of dispersion and nonlinear impairments using digital back propagation. J. Lightwave Technol. 26, 3416–3425 (2008).

    Article  ADS  Google Scholar 

  12. Mateo, E. F., Zhu, L. & Li, G. Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation. Opt. Express 16, 16124–16137 (2008).

    Article  ADS  Google Scholar 

  13. Yariv, A., Fekete, D. & Pepper, D. M. Compensation for channel dispersion by nonlinear optical phase conjugation. Opt. Lett. 4, 52–54 (1979).

    Article  ADS  Google Scholar 

  14. Pepper, D. M. & Yariv, A. Compensation for phase distortions in nonlinear media by phase conjugation. Opt. Lett. 5, 59–60 (1980).

    Article  ADS  Google Scholar 

  15. Fisher, R. A., Suydam, B. R. & Yevick, D. Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects. Opt. Lett. 8, 611–613 (1983).

    Article  ADS  Google Scholar 

  16. Gnauck, A. H., Jopson, R. M. & Derosier, R. M. 10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion. IEEE Photon. Technol. Lett. 5, 663–666 (1993).

    Article  ADS  Google Scholar 

  17. Watanabe, S., Chikama, T., Ishikawa, G., Terahara, T. & Kuwahara, H. Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation. IEEE Photon. Technol. Lett. 5, 1241–1243 (1993).

    Article  ADS  Google Scholar 

  18. Chen, X., Liu, X., Chandrasekhar, S., Zhu, B., & Tkach, R. W. Experimental demonstration of fiber nonlinearity mitigation using digital phase conjugation. Optical Fiber Communication Conference (OFC), paper OTh3C.1 (2012).

  19. Liu, X. et al. Scrambled coherent superposition for enhanced optical fiber communication in the nonlinear transmission regime. Opt. Express 20, 19088–19095 (2012).

    Article  ADS  Google Scholar 

  20. Agrawal, G. P. Nonlinear Fiber Optics (Academic, 2007).

  21. Wai, P. K. A., Menyuk, C. R. & Chen, H. H. Stability of solitons in randomly varying birefringent fibers. Opt. Lett. 16, 1231–1233 (1991).

    Article  ADS  Google Scholar 

  22. Mecozzi, A., Clausen, C. B., Shtaif, M., Park, S-G. & Gnauck, A. H. Cancellation of timing and amplitude jitter in symmetric links using highly dispersed pulses. IEEE Photon. Technol. Lett. 13, 445–447 (2001).

    Article  ADS  Google Scholar 

  23. Louchet, H., Hodzic, A., Petermann, K., Robinson, A. & Epworth, R. Simple criterion for the characterization of nonlinear impairments in dispersion-managed optical transmission systems. IEEE Photon. Technol. Lett. 17, 2089–2091 (2005).

    Article  ADS  Google Scholar 

  24. Wei, X. & Liu, X. Analysis of intrachannel four-wave mixing in differential-phase-shift-keyed transmission with large dispersion. Opt. Lett. 28, 2300–2302 (2003).

    Article  ADS  Google Scholar 

  25. Wei, X. Power-weighted dispersion distribution function for characterizing nonlinear properties of long-haul optical transmission links. Opt. Lett. 31, 2544–2546 (2006).

    Article  ADS  Google Scholar 

  26. Carena, A., Curri, V., Bosco, G., Poggiolini, P. & Forghieri, F. Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links. J. Lightwave Technol. 30, 1524–1539 (2012).

    Article  ADS  Google Scholar 

  27. Vacondio, F. et al. On nonlinear distortions of highly dispersive optical coherent systems. Opt. Express 20, 1022–1032 (2012).

    Article  ADS  Google Scholar 

  28. Slusher R. E. et al. Observation of squeezed states generated by four wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409 (1985).

    Article  ADS  Google Scholar 

  29. Liu, X., Chandrasekhar, S., Winzer, P. J., Tkach, R. W. & Chraplyvy, A. R. 406.6-Gb/s PDM-BPSK superchannel transmission over 12,800-km TWRS fiber via nonlinear noise squeezing. Optical Fiber Communication Conference (OFC), paper PDP5B.10 (2013).

  30. Winzer, P. J. Optical networking beyond WDM. IEEE Photon. J. 4, 647–651 (2012).

    Article  ADS  Google Scholar 

  31. Liu, X. et al. 1.5-Tb/s guard-banded superchannel transmission over 56×100-km (5600-km) ULAF using 30-Gbaud pilot-free OFDM-16QAM signals with 5.75-b/s/Hz net spectral efficiency. European Conference on Optical Communications (ECOC), paper Th3.C.5 (2012).

  32. Mizuochi, T. Next generation FEC for optical communication. Optical Fiber Communication Conference (OFC), paper OTuE5 (2008).

  33. Schmalen, L. et al. A generic tool for assessing the soft-FEC performance in optical transmission experiments. IEEE Photon. Technol. Lett. 24, 40–42 (2012).

    Google Scholar 

  34. Chandrasekhar, S., Liu, X., Zhu, B. & Peckham, D. W. Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber. European Conference on Optical Communications (ECOC), paper PD2.6 (2009).

  35. Hillerkuss, D. et al. 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photon. 5, 364–371 (2011).

    Article  ADS  Google Scholar 

  36. Tolmachev A. & Nazarathy, M. Filter-bank based efficient transmission of reduced-guard-interval OFDM. Opt. Express 19, B370–B384 (2011).

    Article  Google Scholar 

  37. Zhu, B. et al. 112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber. Opt. Express 19, 16665–16671 (2011).

    Article  ADS  Google Scholar 

  38. Takara, H. et al. 1.01-Pb/s (12 SDM/222 WDM/456 Gb/s) crosstalk-managed transmission with 91.4-b/s/Hz aggregate spectral efficiency. European Conference on Optical Communications (ECOC), paper Th3.C.1 (2012).

  39. Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon. 6, 488–496 (2012).

    Article  ADS  Google Scholar 

  40. Foursa D. G. et al. Massive terminal dispersion compensation enabling nondispersion-managed submarine links with first generation coherent transponders. Photon. Technol. Lett. 24, 1530–1532 (2012).

    Article  ADS  Google Scholar 

  41. Tong, Z. et al. Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers. Nature Photon. 5, 430–436 (2011).

    Article  ADS  Google Scholar 

  42. Olsson, S. et al. Phase-sensitive amplified optical link operating in the nonlinear transmission regime. European Conference on Optical Communications (ECOC), paper Th.2.F.1 (2012).

  43. Lücke, B. et al. Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2011).

    Article  ADS  Google Scholar 

  44. Achilleos, V. et al. Multiscale perturbative approach to SU(2)-Higgs classical dynamics: Stability of nonlinear plane waves and bounds of the Higgs field mass. Phys. Rev. D 85, 027702 (2012).

    Article  ADS  Google Scholar 

  45. Della Negra, M., Jenni, P. & Virdee, T. S. Journey in the search for the Higgs boson: the ATLAS and CMS experiments at the Large Hadron Collider. Science 338, 1560–1568 (2012).

    Article  ADS  Google Scholar 

  46. CMS Collaboration. A new boson with a mass of 125 GeV observed with the CMS Experiment at the Large Hadron Collider. Science 338, 1569–1575 (2012).

  47. Kudo, R. et al. Coherent optical single carrier transmission using overlap frequency domain equalization for long-haul optical systems. J. Lightwave Technol. 27, 3721–3728 (2009).

    Article  ADS  Google Scholar 

  48. Shieh, W., Bao, H. & Tang, Y. Coherent optical OFDM: theory and design. Opt. Express 16, 841–859 (2008).

    Article  ADS  Google Scholar 

  49. Liu, X. et al. M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission. Opt. Express 19, B868–B881 (2011).

    Article  ADS  Google Scholar 

  50. Zhou, X. An improved feed-forward carrier recovery algorithm for coherent receiver with M-QAM modulation format. Photon. Technol. Lett. 22, 1051–1053 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

X.L., A.R.C., P.J.W. and R.W.T. jointly developed the concept. X.L. and S.C. designed and performed the experiment. X.L., A.R.C., P.J.W., R.W.T. and S.C. analysed the data. X.L. conducted the theoretical study and wrote the paper.

Corresponding author

Correspondence to Xiang Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 636 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, X., Chraplyvy, A., Winzer, P. et al. Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit. Nature Photon 7, 560–568 (2013). https://doi.org/10.1038/nphoton.2013.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing