Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enhanced energy storage in chaotic optical resonators


Chaos is a phenomenon that occurs in many aspects of contemporary science. In classical dynamics, chaos is defined as a hypersensitivity to initial conditions. The presence of chaos is often unwanted, as it introduces unpredictability, which makes it difficult to predict or explain experimental results. Conversely, we demonstrate here how chaos can be used to enhance the ability of an optical resonator to store energy. We combine analytic theory with ab initio simulations and experiments in photonic-crystal resonators to show that a chaotic resonator can store six times more energy than its classical counterpart of the same volume. We explain the observed increase by considering the equipartition of energy among all degrees of freedom of the chaotic resonator (that is, the cavity modes) and discover a convergence of their lifetimes towards a single value. A compelling illustration of the theory is provided by enhanced absorption in deformed polystyrene microspheres.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Ab initio results of chaotic energy storage.
Figure 2: Chaos-induced modal collapse.
Figure 3: Results for a variable-bandwidth source.
Figure 4: Summary of two-dimensional experimental results.
Figure 5: Energy trapping in two-dimensional resonators.
Figure 6: Summary of the three-dimensional experimental results with deformed microspheres.


  1. 1

    Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002).

    ADS  Article  Google Scholar 

  2. 2

    Bourzac, K. Photonic chips made easier. Nature 483, 388 (2012).

    ADS  Article  Google Scholar 

  3. 3

    Kengo, N. et al. Ultralow-power all-optical RAM based on nanocavities. Nature 6, 248–252 (2012).

    Google Scholar 

  4. 4

    Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photon. 4, 471–476 (2010).

    ADS  Article  Google Scholar 

  5. 5

    Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Chalcraft, A. R. A. et al. Mode structure of the L3 photonic crystal cavity. Appl. Phys. Lett. 90, 241117 (2007).

    ADS  Article  Google Scholar 

  7. 7

    Campillo, A. J. (ed.) Optical Processes in Microcavities (World Scientific, 1995).

    Google Scholar 

  8. 8

    Gensty, T. et al. Wave chaos in real-world vertical-cavity surface-emitting lasers. Phys. Rev. Lett. 94, 233901 (2005).

    ADS  Article  Google Scholar 

  9. 9

    Nöckel, J. U. & Stone, A. D. Ray and wave chaos in asymmetric resonant optical cavities. Nature 385, 45–47 (1997).

    ADS  Article  Google Scholar 

  10. 10

    Harayama, T., Davis, P. & Ikeda, K. S. Stable oscillations of a spatially chaotic wave function in a microstadium laser. Phys. Rev. Lett. 90, 063901 (2003).

    ADS  Article  Google Scholar 

  11. 11

    Gmachl, C. et al. High-power directional emission from microlasers with chaotic resonators. Science 280, 1556–1564 (1998).

    ADS  Article  Google Scholar 

  12. 12

    Michel, C., Doya, V., Legrand, O. & Mortessagne, F. Selective amplification of scars in a chaotic optical fiber. Phys. Rev. Lett. 99, 224101 (2007).

    ADS  Article  Google Scholar 

  13. 13

    Lee, T-D. et al. Surface-structure-assisted chaotic mode lasing in vertical cavity surface emitting lasers. Phys. Rev. Lett. 101, 084101 (2008).

    ADS  Article  Google Scholar 

  14. 14

    Chen, C. C. et al. Transient dynamics of coherent waves released from quantum billiards and analogous observation from free-space propagation of laser modes. Phys. Rev. Lett. 102, 044101 (2009).

    ADS  Article  Google Scholar 

  15. 15

    Brouwer, P. W., Frahm, K. M. & Beenakker, C. W. J. Quantum mechanical time-delay matrix in chaotic scattering. Phys. Rev. Lett. 78, 4737–4740 (1997).

    ADS  Article  Google Scholar 

  16. 16

    Murugan, G. S., Wilkinson, J. S. & Zervas, M. N. Optical microdiscus resonators by flattening microspheres. Appl. Phys. Lett. 101, 071106 (2012).

    ADS  Article  Google Scholar 

  17. 17

    Robnik, M. Classical dynamics of a family of billiards with analytic boundaries. J. Phys. A 16, 3971–3986 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    Haus, H. A. Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

    Google Scholar 

  19. 19

    Tijhuis, A. G. Electromagnetic Inverse Profiling (VNU Science Press, 1987).

    Google Scholar 

  20. 20

    Beck, C. & Schlögl, F. Thermodynamics of Chaotic Systems (Cambridge Univ. Press, 1993).

    Book  Google Scholar 

  21. 21

    Gallavotti, G. Statistical Mechanics: A Short Treatise (Springer, 1999).

    Book  Google Scholar 

  22. 22

    Di Falco, A., Krauss, T. F. & Fratalocchi, A. Lifetime statistics of quantum chaos studied by a multiscale analysis. Appl. Phys. Lett. 100, 184101 (2012).

    ADS  Article  Google Scholar 

  23. 23

    Malaquin, L., Kraus, T., Schmid, H., Delamarche, E. & Wolf, H. Controlled particle placement through convective and capillary assembly. Langmuir 23, 11513–11521 (2007).

    Article  Google Scholar 

  24. 24

    Li, X-H. et al. Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios. IEEE Photon. J. 3, 489–499 (2011).

    ADS  Article  Google Scholar 

  25. 25

    Suh, K. Y., Yoon, H., Lee, H. H., Khademhosseini, A. & Langer, R. Solventless ordering of colloidal particles through application of patterned elastomeric stamps under pressure. Appl. Phys. Lett. 85, 2643–2645 (2004).

    ADS  Article  Google Scholar 

  26. 26

    Ott, E. Chaos in Dynamical Systems (Cambridge Univ. Press, 1997).

    MATH  Google Scholar 

Download references


The resources of the Supercomputing Laboratory at King Abdullah University of Science & Technology (KAUST) were used for computer time. A.F. acknowledges funding from KAUST (award no. CRG-1-2012-FRA-005). A.D.F. is supported by an EPSRC Career Acceleration Fellowship (EP/ I004602/1).

Author information




A.F. initiated the work and developed the theory behind chaotic energy harvesting. C.L., D.M. and A.F. carried out numerical FDTD simulations and performed data analysis. A.D.F. and T.F.K. realized the photonic-crystal samples and performed the experiments on the two-dimensional geometries. B.S.O., Y.K. and A.F. performed experiments on three-dimensional deformed microspheres. All authors contributed to manuscript preparation.

Corresponding author

Correspondence to A. Fratalocchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 541 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, C., Di Falco, A., Molinari, D. et al. Enhanced energy storage in chaotic optical resonators. Nature Photon 7, 473–478 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing