Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum cryptography

Continuous improvement

Using photons to disseminate encryption codes with complete security is one of the great successes of quantum information science. It has now been shown that long-distance cryptographic communication is just as effective when the scheme involves measuring the wave properties of light, rather than its particle properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Quantum key distribution systems using DV single-photon state encoding (green) and CV quadrature-field amplitude encoding (red).

References

  1. 1

    Bennett, C. H. & Brassard, G. Proc. IEEE Int. Conf. Computers, Systems and Signal Processing 175–179 (IEEE, 1984).

    Google Scholar 

  2. 2

    Ralph, T. C. Phys. Rev. A 61, 010303(R) (1999).

    Article  Google Scholar 

  3. 3

    Hillery, M. Phys. Rev. A 61, 022309 (2000).

    ADS  Article  Google Scholar 

  4. 4

    Reid, M. D. Phys. Rev. A 62, 062308 (2000).

    ADS  Article  Google Scholar 

  5. 5

    Grosshans F. & Grangier, P. Phys. Rev. Lett. 88, 057902 (2002).

    ADS  Article  Google Scholar 

  6. 6

    Silberhorn, C., Ralph, T. C., Lütkenhaus, N. & Leuchs, G. Phys. Rev. Lett. 89, 167901 (2002).

    ADS  Article  Google Scholar 

  7. 7

    Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P. & Diamanti, E. Nature Photon. 10.1038/nphoton.2013.63 (14 April 2013).

  8. 8

    Fossier, S. et al. New J. Phys. 11, 045023 (2009).

    ADS  Article  Google Scholar 

  9. 9

    Dinh Xuan, Q., Zhang, Z. & Voss, P. Opt. Express 17, 24244–24249 (2009).

    ADS  Article  Google Scholar 

  10. 10

    Jouguet, P., Kunz-Jacques, S., Diamanti, E. & Leverrier, A. Phys. Rev. A 86, 032309 (2012).

    ADS  Article  Google Scholar 

  11. 11

    Lydersen, L. et al. Nature Photon. 4, 686–689 (2010).

    ADS  Article  Google Scholar 

  12. 12

    Stucki, D. et al. New J. Phys. 11, 075003 (2009).

    ADS  Article  Google Scholar 

  13. 13

    Wang, S. et al. Opt. Lett. 37, 1008–1010 (2012).

    ADS  Article  Google Scholar 

  14. 14

    Liu, Y. et al. Opt. Express 18, 8587–8594 (2010).

    ADS  Article  Google Scholar 

  15. 15

    Ursin, R. et al. Nature Phys. 3, 481–486 (2007).

    ADS  Article  Google Scholar 

  16. 16

    Dixon, A. R. et al. Appl. Phys. Lett. 96, 161102 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Fiurášek, J. & Cerf, N. J. Phys. Rev. A 86, 060302(R) (2012).

    ADS  Article  Google Scholar 

  18. 18

    Walk, N., Ralph, T. C., Symul, T. & Lam, P. K. Phys. Rev. A 87, 020303(R) (2013).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. K. Lam.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lam, P., Ralph, T. Continuous improvement. Nature Photon 7, 350–352 (2013). https://doi.org/10.1038/nphoton.2013.104

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing