Experimental boson sampling


Universal quantum computers1 promise a dramatic increase in speed over classical computers, but their full-size realization remains challenging2. However, intermediate quantum computational models3,4,5 have been proposed that are not universal but can solve problems that are believed to be classically hard. Aaronson and Arkhipov6 have shown that interference of single photons in random optical networks can solve the hard problem of sampling the bosonic output distribution. Remarkably, this computation does not require measurement-based interactions7,8 or adaptive feed-forward techniques9. Here, we demonstrate this model of computation using laser-written integrated quantum networks that were designed to implement unitary matrix transformations. We characterize the integrated devices using an in situ reconstruction method and observe three-photon interference10,11,12 that leads to the boson-sampling output distribution. Our results set a benchmark for a type of quantum computer with the potential to outperform a conventional computer through the use of only a few photons and linear-optical elements13.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Non-classical interference.
Figure 2: The optical networks.
Figure 3: Experimental set-up.
Figure 4: Three-photon probabilities.


  1. 1

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    Google Scholar 

  2. 2

    Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    ADS  Article  Google Scholar 

  3. 3

    Knill, E. & Laflamme, R. Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672–5675 (1998).

    ADS  Article  Google Scholar 

  4. 4

    Aaronson, S. & Gottesman, D. Improved simulation of stabilizer circuits. Phys. Rev. A 70, 052328 (2004).

    ADS  Article  Google Scholar 

  5. 5

    Jordan, S. P. Permutational quantum computing. Quant. Infor. Comput. 10, 470–497 (2010).

    Google Scholar 

  6. 6

    Aaronson, S. & Arkhipov, A. in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing 333–342 (ACM, 2011).

    Google Scholar 

  7. 7

    Gasparoni, S., Pan, J-W., Walther, P., Rudolph, T. & Zeilinger, A. Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504 (2004).

    ADS  Article  Google Scholar 

  8. 8

    Okamoto, R., O'Brien, J., Hofmann, H. & Takeuchi, S. Realization of a Knill–Laflamme–Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities. Proc. Natl Acad. Sci. USA 108, 10067–10071 (2011).

    ADS  Article  Google Scholar 

  9. 9

    Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

    ADS  Article  Google Scholar 

  10. 10

    Metcalf, B. J. et al. Multiphoton quantum interference in a multiport integrated photonic device. Nat. Commun. 4, 1356 (2013).

    ADS  Article  Google Scholar 

  11. 11

    Spagnolo, N. et al. Three-photon bosonic coalescence in an integrated tritter. Preprint at http://lanl.arxiv.org/abs/1210.6935 (2012).

  12. 12

    Spagnolo, N. et al. Quantum interferometry with three-dimensional geometry. Sci. Rep. 2, 862 (2012).

    Article  Google Scholar 

  13. 13

    Rohde, P. P. & Ralph, T. C. Error tolerance of the boson-sampling model for linear optics quantum computing. Phys. Rev. A 85, 022332 (2012).

    ADS  Article  Google Scholar 

  14. 14

    Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    ADS  Article  Google Scholar 

  15. 15

    Gao, W. et al. Teleportation-based realization of an optical quantum two-qubit entangling gate. Proc. Natl Acad. Sci. USA 107, 20869–20874 (2010).

    ADS  Article  Google Scholar 

  16. 16

    Yoran, N. & Reznik, B. Deterministic linear optics quantum computation with single photon qubits. Phys. Rev. Lett. 91, 037903 (2003).

    ADS  Article  Google Scholar 

  17. 17

    Nielsen, M. A. Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004).

    ADS  Article  Google Scholar 

  18. 18

    Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    ADS  Article  Google Scholar 

  19. 19

    Ralph, T. C., Hayes, A. J. F. & Gilchrist, A. Loss-tolerant optical qubits. Phys. Rev. Lett. 95, 100501 (2005).

    ADS  Article  Google Scholar 

  20. 20

    O'Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Aaronson, S. A linear-optical proof that the permanent is #P-hard. Proc. R. Soc. A 467, 3393–3405 (2011).

    ADS  MathSciNet  Article  Google Scholar 

  22. 22

    Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    ADS  Article  Google Scholar 

  23. 23

    Zeilinger, A. General properties of lossless beam splitters in interferometry. Am. J. Phys. 49, 882–883 (1981).

    ADS  Article  Google Scholar 

  24. 24

    Arkhipov, A. & Kuperberg, G. The bosonic birthday paradox. Geom. Topol. Monog. 18, 1–7 (2012).

    MathSciNet  Article  Google Scholar 

  25. 25

    Itoh, K., Watanabe, W., Nolte, S. & Schaffer, C. Ultrafast processes for bulk modification of transparent materials. MRS Bull. 31, 620–625 (2006).

    Article  Google Scholar 

  26. 26

    Marshall, G. et al. Laser written waveguide photonic quantum circuits. Opt. Express 17, 12546–12554 (2009).

    ADS  Article  Google Scholar 

  27. 27

    Reck, M. et al. Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994).

    ADS  Article  Google Scholar 

  28. 28

    Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    ADS  Article  Google Scholar 

  29. 29

    Laing, A. & O'Brien, J. L. Super-stable tomography of any linear optical device. Preprint at http://lanl.arxiv.org/abs/1208.2868 (2012).

  30. 30

    Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801 (2013).

    ADS  Article  Google Scholar 

  31. 31

    Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794–798 (2013).

    ADS  Article  Google Scholar 

  32. 32

    Crespi, A. et al. Experimental boson sampling in arbitrary integrated photonic circuits. Nature Photon. http://dx.doi.org/10.1038/nphoton.2013.112 (in the press); preprint at http://lanl.arxiv.org/abs/1212.2783 (2012).

Download references


The authors thank S. Aaronson, Č. Brukner and M. Ringbauer for discussions. The authors acknowledge support from the European Commission under projects ‘Q-ESSENCE—Quantum Interfaces, Sensors, and Communication based on Entanglement’ (no. 248095), ‘QuILMI—Quantum Integrated Light Matter Interface’ (no. 295293) and the ERA-Net CHIST-ERA project ‘QUASAR—Quantum States: Analysis and Realizations’, the German Ministry of Education and Research (Center for Innovation Competence program, grant no. 03Z1HN31), the John Templeton Foundation, the Vienna Center for Quantum Science and Technology (VCQ), the Austrian Nano-initiative ‘Nanostructures of Atomic Physics (NAP-PLATON)’ and the Austrian Science Fund (FWF) under projects ‘SFB-FoQuS—Foundations and Applications of Quantum Science’, ‘PhoQuSi—Photonic Quantum Simulators (Y585-N20)’ and the doctoral programme ‘CoQuS—Complex Quantum Systems’, the Vienna Science and Technology Fund (WWTF; under grant no. ICT12-041), and the Air Force Office of Scientific Research, Air Force Material Command, United States Air Force (grant no. FA8655-11-1-3004).

Author information




M.T. designed and carried out the experiment, analysed data and waveguide structures, and wrote the manuscript. B.D. provided the theoretical analysis, analysed data and waveguide structures, and wrote the manuscript. R.H. designed and prepared the waveguide structures. S.N. and A.S. supervised the design and preparation of the waveguide structures. P.W. supervised the project, designed the experiment and wrote the manuscript.

Corresponding authors

Correspondence to Max Tillmann or Philip Walther.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2505 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tillmann, M., Dakić, B., Heilmann, R. et al. Experimental boson sampling. Nature Photon 7, 540–544 (2013). https://doi.org/10.1038/nphoton.2013.102

Download citation

Further reading