Abstract
Optical coherent states are classical light fields with high purity, and are essential carriers of information in optical networks. If these states could be controlled in the quantum regime, allowing for their quantum superposition (referred to as a Schrödinger-cat state), then novel quantum-enhanced functions such as coherent-state quantum computing (CSQC)1,2,3,4,5, quantum metrology6,7 and a quantum repeater8,9 could be realized in the networks. Optical cat states are now routinely generated in laboratories. An important next challenge is to use them for implementing the aforementioned functions. Here, we demonstrate a basic CSQC protocol, where a cat state is used as an entanglement resource for teleporting a coherent state with an amplitude gain. We also show how this can be extended to a loss-tolerant quantum relay of multi-ary phase-shift keyed coherent states. These protocols could be useful in both optical and quantum communications.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Qubit-Programmable Operations on Quantum Light Fields
Scientific Reports Open Access 15 October 2015
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Cochrane, P. T., Milburn, G. J. & Munro, W. J. Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping. Phys. Rev. A 59, 2631–2634 (1999).
Jeong, H. & Kim, M. S. Efficient quantum computation using coherent states. Phys. Rev. A 65, 042305 (2002).
Ralph, T. C., Gilchrist, A., Milburn, G., Munro, W. J. & Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003).
Jeong, H. & Ralph, T. C. in Quantum Information with Continuous Variables of Atoms and Light (eds Cerf, N. J., Leuchs G. & Polzik, E. S.) Ch. 9 (Imperial College Press, 2007).
Lund, A. P., Ralph, T. C. & Haselgrove, H. L. Fault-tolerant linear optical quantum computing with small-amplitude coherent states. Phys. Rev. Lett. 100, 030503 (2008).
Gerry, C., Benmoussa, A. & Campos, R. Nonlinear interferometer as a resource for maximally entangled photonic states: application to interferometry. Phys. Rev. A 66, 013804 (2002).
Joo, J., Munro, W. J. & Spiller, T. Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011).
Sangouard, N. et al. Quantum repeaters with entangled coherent states. J. Opt. Soc. Am. B 27, A137–A145 (2010).
Brask, J. B. et al. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett. 105, 160501 (2010).
Giovannetti, V. et al. Classical capacity of the lossy bosonic channel: the exact solution. Phys. Rev. Lett. 92, 027902 (2004).
Sasaki, M., Sasaki-Usuda, T., Izutsu, M. & Hirota, O. Realization of a collective decoding of code-word states. Phys. Rev. A 58, 159–164 (1998).
Waseda, A., Takeoka, M., Sasaki, M., Fujiwara, M. & Tanaka, H. Quantum detection of wavelength-division-multiplexing optical coherent signals. J. Opt. Soc. Am. B 27, 259–265 (2010).
Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information processing. Science 312, 83–86 (2006).
Neergaard-Nielsen, J. S., Nielsen, B. M., Hettich, C., Mølmer, K. & Polzik, E. S. Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006).
Wakui, K., Takahashi, H., Furusawa, A. & Sasaki, M. Photon subtracted squeezed states generated with periodically poled KTiOPO4 . Opt. Express 15, 3568–3574 (2007).
Ourjoumtsev, A., Jeong, H., Tualle-Brouri, R. & Grangier, P. Generation of optical ‘Schrödinger cats’ from photon number states. Nature 448, 784–786 (2007).
Takahashi, H. et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. Phys. Rev. Lett. 101, 233605 (2008).
Neergaard-Nielsen, J. S. et al. Optical continuous-variable qubit. Phys. Rev. Lett. 105, 053602 (2010).
Lee, N. et al. Teleportation of nonclassical wave packets of light. Science 332, 330–333 (2011).
Van Enk, S. J. & Hirota, O. Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001).
Jeong, H., Kim, M. & Lee, J. Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001).
Jacobs, B., Pittman, T. & Franson, J. Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002).
Collins, D., Gisin, N. & De Riedmatten, H. Quantum relays for long distance quantum cryptography. J. Mod. Opt. 52, 735–753 (2005).
Koashi, M. Unconditional security of coherent-state quantum key distribution with a strong phase-reference pulse. Phys. Rev. Lett. 93, 120501 (2004).
Tamaki, K., Lütkenhaus, N., Koashi, M. & Batuwantudawe, J. Unconditional security of the Bennett 1992 quantum-key-distribution scheme with a strong reference pulse. Phys. Rev. A 80, 032302 (2009).
Lo, H-K. & Preskill, J. Security of quantum key distribution using weak coherent states with nonrandom phases. Quant. Inf. Comp. 7, 431–458 (2007).
Takeoka, M. et al. Engineering of optical continuous-variable qubits via displaced photon subtraction: multimode analysis. J. Mod. Opt. 58, 266–275 (2011).
Xiang, G. Y., Ralph, T. C., Lund, A. P., Walk, N. & Pryde, G. J. Heralded noiseless linear amplification and distillation of entanglement. Nature Photon. 4, 316–319 (2010).
Zavatta, A., Fiurášek, J. & Bellini, M. A high-fidelity noiseless amplifier for quantum light states. Nature Photon. 5, 52–60 (2010).
Ferreyrol, F., Blandino, R., Barbieri, M., Tualle-Brouri, R. & Grangier, P. Experimental realization of a nondeterministic optical noiseless amplifier. Phys. Rev. A 83, 063801 (2011).
Brańczyk, A. & Ralph, T. C. Teleportation using squeezed single photons. Phys. Rev. A 78, 052304 (2008).
Acknowledgements
The authors acknowledge helpful discussions with K. Wakui, M. Takeoka, K. Hayasaka, M. Fujiwara, T.C. Ralph, A.P. Lund, K. Tamaki and M. Koashi. This work was partly supported by the Quantum Information Processing Project in the Program for World-Leading Innovation Research and Development on Science and Technology (FIRST) and by a National Research Foundation of Korea (NRF) grant funded by the Korean Government (Ministry of Education, Science, and Technology; no. 2010-0018295).
Author information
Authors and Affiliations
Contributions
M.S. and J.S.N-N. formulated the basic protocol of tele-amplification and loss-tolerant quantum relay, inspired by a teleportation scheme by C-W.L. and H.J. J.S.N-N. and Y.E. carried out the experiment. J.S.N-N., C-W.L., M.S. and H.J. performed the theoretical calculations. J.S.N-N. and M.S. wrote the manuscript, with discussions and input from all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1759 kb)
Rights and permissions
About this article
Cite this article
Neergaard-Nielsen, J., Eto, Y., Lee, CW. et al. Quantum tele-amplification with a continuous-variable superposition state. Nature Photon 7, 439–443 (2013). https://doi.org/10.1038/nphoton.2013.101
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2013.101
This article is cited by
-
Hybrid quantum key distribution network
Science China Information Sciences (2022)
-
Control engineering of continuous-mode single-photon states: a review
Control Theory and Technology (2021)
-
Qubit-Programmable Operations on Quantum Light Fields
Scientific Reports (2015)
-
Hybrid discrete- and continuous-variable quantum information
Nature Physics (2015)
-
Generation of hybrid entanglement of light
Nature Photonics (2014)