Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlling waves in space and time for imaging and focusing in complex media

Abstract

In complex media such as white paint and biological tissue, light encounters nanoscale refractive-index inhomogeneities that cause multiple scattering. Such scattering is usually seen as an impediment to focusing and imaging. However, scientists have recently used strongly scattering materials to focus, shape and compress waves by controlling the many degrees of freedom in the incident waves. This was first demonstrated in the acoustic and microwave domains using time reversal, and is now being performed in the optical realm using spatial light modulators to address the many thousands of spatial degrees of freedom of light. This approach is being used to investigate phenomena such as optical super-resolution and the time reversal of light, thus opening many new avenues for imaging and focusing in turbid media.

Scattering of light is usually seen as an impediment to focusing and imaging. This article reviews the recent progress of how strongly scattering media can be used to focus, shape and compress waves by controlling the many degrees of freedom in the incident waves.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Speckle correlations in space and frequency.
Figure 2: Using spatial degrees of freedom to focus light through complex media.
Figure 3: Taking advantage of the temporal degrees of freedom in complex media.
Figure 4: Controlling waves in complex media for sub-diffraction and subwavelength focusing and imaging.
Figure 5: Recent applications of wavefront control in complex media.

References

  1. 1

    Ishimaru, A. Wave Propagation and Scattering in Random Media (Academic, 1978).

    MATH  Google Scholar 

  2. 2

    Sebbah, P. Waves and Imaging through Complex Media (Kluwer Academic, 1999).

    Google Scholar 

  3. 3

    Tuchin, V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE, 2007).

    Google Scholar 

  4. 4

    Gibson, A. P., Hebden, J. C. & Arridge, S. R. Recent advances in diffuse optical imaging. Phys. Med. Biol. 50, R1–R43 (2005).

    ADS  Google Scholar 

  5. 5

    Kennedy, L. C. et al. A new era for cancer treatment: Gold-nanoparticle-mediated thermal therapies. Small 7, 169–183 (2011).

    Google Scholar 

  6. 6

    Mady, E., Nadejda, M. & Pascal, C. Review of several optical non-destructive analyses of an easel painting: Complementarity and crosschecking of the results. J. Cult. Herit. 12, 335–345 (2011).

    Google Scholar 

  7. 7

    Koenderink, A. F., Lagendijk, A. & Vos, W. L. Optical extinction due to intrinsic structural variations of photonic crystals. Phys. Rev. B 72, 153102 (2005).

    ADS  Google Scholar 

  8. 8

    Leith, E. N. & Upatnieks, J. Holographic imagery through diffusing media. J. Opt. Soc. Am. 56, 523–523 (1966).

    Google Scholar 

  9. 9

    Freund, I. Looking through walls and around corners. Physica A 168, 49–65 (1990).

    ADS  Google Scholar 

  10. 10

    Goodman, J. W. Statistical Optics (Wiley, 2000).

    Google Scholar 

  11. 11

    Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic, 1995).

    Google Scholar 

  12. 12

    Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997).

    ADS  Google Scholar 

  13. 13

    Andrews, L., Phillips, R. & Hopen, C. Laser Beam Scintillation with Applications Vol. 99 (SPIE, 2001).

    Google Scholar 

  14. 14

    Huang, D. et al. Optical coherence tomography. Science 254, 1178–1181 (1991).

    ADS  Google Scholar 

  15. 15

    Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nature Meth. 2, 932–940 (2005).

    Google Scholar 

  16. 16

    den Outer, P. N., Nieuwenhuizen, T. & Lagendijk, A. Location of objects in multiple-scattering media. J. Opt. Soc. Am. A 10, 1209–1218 (1993).

    ADS  Google Scholar 

  17. 17

    Ntziachristos, V. Fluorescence molecular imaging. Ann. Rev. Biomed. Eng. 8, 1–33 (2006).

    Google Scholar 

  18. 18

    Bridges, W. B. et al. Coherent optical adaptive techniques. Appl. Opt. 13, 291–300 (1974).

    ADS  Google Scholar 

  19. 19

    Hardy, J. W. Adaptive Optics for Astronomical Telescopes (Oxford Univ., 1998).

    Google Scholar 

  20. 20

    Dainty, J. C. in Laser Speckle and Related Phenomena Vol. 9, 255–280 (Springer, 1975).

    Google Scholar 

  21. 21

    Chandrasekhar, S. Radiative Transfer (Dover, 1960).

    MATH  Google Scholar 

  22. 22

    van Albada, M. P. & Lagendijk, A. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692–2695 (1985).

    ADS  Google Scholar 

  23. 23

    Wolf, P. E. & Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696–2699 (1985).

    ADS  Google Scholar 

  24. 24

    Wiersma, D. S., Bartolini, P., Lagendijk, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    ADS  Google Scholar 

  25. 25

    Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 6780 (2000).

    Google Scholar 

  26. 26

    Hu, H., Strybulevych, A., Page, J., Skipetrov, S. & Van Tiggelen, B. Localization of ultrasound in a three-dimensional elastic network. Nature Phys. 4, 945–948 (2008).

    ADS  Google Scholar 

  27. 27

    Lagendijk, A., van Tiggelen, B. & Wiersma, D. S. Fifty years of Anderson localization. Phys. Today 62, 24–29 (August 2009).

    Google Scholar 

  28. 28

    Kop, R. H. J., Vries, P. D., Sprik, R. & Lagendijk, A. Observation of anomalous transport of strongly multiple scattered light in thin disordered slabs. Phys. Rev. Lett. 79, 4369–4372 (1997).

    ADS  Google Scholar 

  29. 29

    Fink, M. Time reversed acoustics. Phys. Today 50, 34–40 (March 1997).

    Google Scholar 

  30. 30

    van Albada, M. P., de Boer, J. F. & Lagendijk, A. Observation of long-range intensity correlation in the transport of coherent light through a random medium. Phys. Rev. Lett. 64, 2787–2790 (1990).

    ADS  Google Scholar 

  31. 31

    van Albada, M. P., van Tiggelen, B. A., Lagendijk, A. & Tip, A. Speed of propagation of classical waves in strongly scattering media. Phys. Rev. Lett. 66, 3132–3135 (1991).

    ADS  Google Scholar 

  32. 32

    Lagendijk, A. & van Tiggelen, B. A. Resonant multiple scattering of light. Phys. Rep. 270, 143–215 (1996).

    ADS  Google Scholar 

  33. 33

    Wang, J. & Genack, A. Transport through modes in random media. Nature 471, 345–348 (2011).

    ADS  Google Scholar 

  34. 34

    Boer, J. F. D., Albada, M. P. V. & Lagendijk, A. Transmission and intensity correlations in wave-propagation through random-media. Phys. Rev. B 45, 658–666 (1992).

    ADS  Google Scholar 

  35. 35

    Emiliani, V. et al. Near-field short range correlation in optical waves transmitted through random media. Phys. Rev. Lett. 90, 250801 (2003).

    ADS  MathSciNet  Google Scholar 

  36. 36

    Lemoult, F., Lerosey, G., de Rosny, J. & Fink, M. Manipulating spatiotemporal degrees of freedom of waves in random media. Phys. Rev. Lett. 103, 173902 (2009).

    ADS  Google Scholar 

  37. 37

    Davy, M., Shi, Z. & Genack, A. Z. Focusing through random media: Eigenchannel participation number and intensity correlation. Phys. Rev. B 85, 035105 (2012).

    ADS  Google Scholar 

  38. 38

    Maurer, C., Jesacher, A., Bernet, S. & Ritsch-Marte, M. What spatial light modulators can do for optical microscopy. Laser Photon. Rev. 5, 81–101 (2011).

    ADS  Google Scholar 

  39. 39

    Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Google Scholar 

  40. 40

    Vellekoop, I. M., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

    ADS  Google Scholar 

  41. 41

    Pendry, J. B. Light finds a way through the maze. Physics 1, 20 (2008).

    Google Scholar 

  42. 42

    Dorokhov, O. N. On the coexistence of localized and extended electronic states in the metallic phase. Sol. Stat. Commun. 51, 381–384 (1984).

    ADS  Google Scholar 

  43. 43

    Imry, Y. Active transmission channels and universal conductance fluctuations. Europhys. Lett. 1, 249–256 (1986).

    ADS  Google Scholar 

  44. 44

    Vellekoop, I. M. & Mosk, A. P. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008).

    ADS  Google Scholar 

  45. 45

    Choi, W., Mosk, A. P., Park, Q.-H. & Choi, W. Transmission eigenchannels in a disordered medium. Phys. Rev. B 83, 134207 (2011).

    ADS  Google Scholar 

  46. 46

    Shi, Z. & Genack, A. Z. Transmission eigenvalues and the bare conductance in the crossover to Anderson localization. Phys. Rev. Lett. 108, 043901 (2012).

    ADS  Google Scholar 

  47. 47

    Popoff, S. et al. Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Google Scholar 

  48. 48

    van Putten, E. G. & Mosk, A. P. The information age in optics: Measuring the transmission matrix. Physics 3, 22 (2010).

    Google Scholar 

  49. 49

    Kohlgraf-Owens, T. & Dogariu, A. Transmission matrices of random media: Means for spectral polarimetric measurements. Opt. Lett. 35, 2236–2238 (2010).

    ADS  Google Scholar 

  50. 50

    Popoff, S., Lerosey, G., Fink, M., Boccara, A. & Gigan, S. Image transmission through an opaque material. Nature Commun. 1, 1–5 (2010).

    Google Scholar 

  51. 51

    Yariv, A. & Pepper, D. Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing. Opt. Lett. 1, 16–18 (1977).

    ADS  Google Scholar 

  52. 52

    Zel'dovich, B., Popovichev, V., Ragul'skii, V. & Faizullov, F. Connection between the wave fronts of the reflected and exciting light in stimulated Mandel'shtam–Brillouin scattering. JETP Lett. 15, 109–112 (1972).

    ADS  Google Scholar 

  53. 53

    Günter, P. & Huignard, J. Photorefractive Materials and their Applications I: Materials Vol. 2 (Springer, 2007).

    Google Scholar 

  54. 54

    Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nature Photon. 2, 110–115 (2008).

    ADS  Google Scholar 

  55. 55

    Cui, M. & Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455 (2010).

    ADS  Google Scholar 

  56. 56

    Van Beijnum, F., van Putten, E., Lagendijk, A. & Mosk, A. P. Frequency bandwidth of light focused through turbid media. Opt. Lett. 36, 373–375 (2011).

    ADS  Google Scholar 

  57. 57

    Fink, M. Time reversal of ultrasonic fields. I: Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).

    Google Scholar 

  58. 58

    Derode, A., Roux, P. & Fink, M. Robust acoustic time reversal with high-order multiple scattering. Phys. Rev. Lett. 75, 4206–4209 (1995).

    ADS  Google Scholar 

  59. 59

    Derode, A., Tourin, A. & Fink, M. Random multiple scattering of ultrasound. I: Coherent and ballistic waves. Phys. Rev. E 64, 036605 (2001).

    ADS  Google Scholar 

  60. 60

    Derode, A., Tourin, A. & Fink, M. Random multiple scattering of ultrasound. II: Is time reversal a self-averaging process? Phys. Rev. E 64, 036606 (2001).

    ADS  Google Scholar 

  61. 61

    Lerosey, G. et al. Time reversal of electromagnetic waves. Phys. Rev. Lett. 92, 193904 (2004).

    ADS  Google Scholar 

  62. 62

    Lerosey, G., de Rosny, J., Tourin, A., Derode, A. & Fink, M. Time reversal of wideband microwaves. Appl. Phys. Lett. 88, 154101 (2006).

    ADS  Google Scholar 

  63. 63

    Tanter, M., Aubry, J. F., Gerber, J., Thomas, J. L. & Fink, M. Optimal focusing by spatio-temporal inverse filter. I: Basic principles. J. Acoust. Soc. Am. 110, 37–47 (2001).

    ADS  Google Scholar 

  64. 64

    Montaldo, G., Tanter, M. & Fink, M. Real time inverse filter focusing through iterative time reversal. J. Acoust. Soc. Am. 115, 768–775 (2004).

    ADS  Google Scholar 

  65. 65

    Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    ADS  Google Scholar 

  66. 66

    Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    ADS  Google Scholar 

  67. 67

    McCabe, D. et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nature Commun. 2, 447 (2011).

    Google Scholar 

  68. 68

    Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007).

    ADS  Google Scholar 

  69. 69

    Yariv, A. Four wave nonlinear optical mixing as real time holography. Opt. Commun. 25, 23–25 (1978).

    ADS  Google Scholar 

  70. 70

    Miller, D. A. B. Time reversal of optical pulses by four-wave mixing. Opt. Lett. 5, 300–302 (1980).

    ADS  Google Scholar 

  71. 71

    Yanik, M. F. & Fan, S. Time reversal of light with linear optics and modulators. Phys. Rev. Lett. 93, 173903 (2004).

    ADS  Google Scholar 

  72. 72

    Longhi, S. Stopping and time reversal of light in dynamic photonic structures via Bloch oscillations. Phys. Rev. E 75, 026606 (2007).

    ADS  Google Scholar 

  73. 73

    Sivan, Y. & Pendry, J. B. Time reversal in dynamically tuned zero-gap periodic systems. Phys. Rev. Lett. 106, 193902 (2011).

    ADS  Google Scholar 

  74. 74

    Pendry, J. B. Time reversal and negative refraction. Science 322, 71–73 (2008).

    ADS  MathSciNet  MATH  Google Scholar 

  75. 75

    Katko, A. R. et al. Phase conjugation and negative refraction using nonlinear active metamaterials. Phys. Rev. Lett. 105, 123905 (2010).

    ADS  Google Scholar 

  76. 76

    Vellekoop, I. M. & Aegerter, C. M. Scattered light fluorescence microscopy: Imaging through turbid layers. Opt. Lett. 35, 1245–1247 (2010).

    ADS  Google Scholar 

  77. 77

    Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988).

    ADS  Google Scholar 

  78. 78

    Freund, I., Rosenbluh, M. & Feng, S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988).

    ADS  Google Scholar 

  79. 79

    Hsieh, C., Pu, Y., Grange, R. & Psaltis, D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010).

    ADS  Google Scholar 

  80. 80

    Xu, X., Liu, H. & Wang, L. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photon. 5, 154–157 (2011).

    ADS  Google Scholar 

  81. 81

    Henty, B. E. & Stancil, D. D. Multipath-enabled super-resolution for RF and microwave communication using phase-conjugate arrays. Phys. Rev. Lett. 93, 243904 (2004).

    ADS  Google Scholar 

  82. 82

    Vellekoop, I. M. Controlling the Propagation of Light in Disordered Scattering Media. PhD thesis, Univ. Twente (2008).

    Google Scholar 

  83. 83

    Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

    Google Scholar 

  84. 84

    Cui, M., McDowell, E. J. & Yang, C. Observation of polarization-gate based reconstruction quality improvement during the process of turbidity suppression by optical phase conjugation. Appl. Phys. Lett. 95, 123702 (2009).

    ADS  Google Scholar 

  85. 85

    Draeger, C. & Fink, M. One-channel time reversal of elastic waves in a chaotic 2D-silicon cavity. Phys. Rev. Lett. 79, 407–410 (1997).

    ADS  Google Scholar 

  86. 86

    van Putten, E. G., Lagendijk, A. & Mosk, A. P. Optimal concentration of light in turbid materials. J. Opt. Soc. Am. B 28, 1200–1203 (2011).

    ADS  Google Scholar 

  87. 87

    Mudry, E., Le Moal, E., Ferrand, P., Chaumet, P. C. & Sentenac, A. Isotropic diffraction-limited focusing using a single objective lens. Phys. Rev. Lett. 105, 203903 (2010).

    ADS  Google Scholar 

  88. 88

    Lerosey, G., de Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    ADS  Google Scholar 

  89. 89

    Li, X. & Stockman, M. I. Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer–femtosecond scale by time reversal. Phys. Rev. B 77, 195109 (2008).

    ADS  Google Scholar 

  90. 90

    Lemoult, F., Lerosey, G., de Rosny, J. & Fink, M. Resonant metalenses for breaking the diffraction barrier. Phys. Rev. Lett. 104, 203901 (2010).

    ADS  Google Scholar 

  91. 91

    Lemoult, F., Fink, M. & Lerosey, G. Acoustic resonators for far-field control of sound on a subwavelength scale. Phys. Rev. Lett. 107, 064301 (2011).

    ADS  Google Scholar 

  92. 92

    Kao, T. S., Jenkins, S. D., Ruostekoski, J. & Zheludev, N. I. Coherent control of nanoscale light localization in metamaterial: Creating and positioning isolated subwavelength energy hot spots. Phys. Rev. Lett. 106, 085501 (2011).

    ADS  Google Scholar 

  93. 93

    Lemoult, F., Fink, M. & Lerosey, G. Revisiting the wire medium: An ideal resonant metalens. Wave. Random Complex 21, 591–613 (2011).

    ADS  MATH  Google Scholar 

  94. 94

    Lemoult, F., Fink, M. & Lerosey, G. Far-field sub-wavelength imaging and focusing using a wire medium based resonant metalens. Wave. Random Complex 21, 614–627 (2011).

    ADS  MATH  Google Scholar 

  95. 95

    Gjonaj, B. et al. Active spatial control of plasmonic fields. Nature Photon. 5, 360–363 (2011).

    ADS  Google Scholar 

  96. 96

    van Putten, E. G. et al. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011).

    ADS  Google Scholar 

  97. 97

    Bartal, G., Lerosey, G. & Zhang, X. Subwavelength dynamic focusing in plasmonic nanostructures using time reversal. Phys. Rev. B 79, 201103 (2009).

    ADS  Google Scholar 

  98. 98

    Sentenac, A. & Chaumet, P. Subdiffraction light focusing on a grating substrate. Phys. Rev. Lett. 101, 013901 (2008).

    ADS  Google Scholar 

  99. 99

    Volpe, G., Molina-Terriza, G. & Quidant, R. Deterministic subwavelength control of light confinement in nanostructures. Phys. Rev. Lett. 105, 216802 (2010).

    ADS  Google Scholar 

  100. 100

    Montaldo, G., Roux, P., Derode, A., Negreira, C. & Fink, M. Ultrasound shock wave generator with one-bit time reversal in a dispersive medium, application to lithotripsy. Appl. Phys. Lett. 80, 897–899 (2002).

    ADS  Google Scholar 

  101. 101

    Davy, M., de Rosny, J., Joly, J.-C. & Fink, M. Focusing and amplification of electromagnetic waves by time reversal in an leaky reverberation chamber. C. R. Phys. 11, 37–43 (2010).

    ADS  Google Scholar 

  102. 102

    Montaldo, G., Palacio, D., Tanter, M. & Fink, M. Time reversal kaleidoscope: A smart transducer for three-dimensional ultrasonic imaging. Appl. Phys. Lett. 84, 3879–3881 (2004).

    ADS  Google Scholar 

  103. 103

    Borcea, L., Papanicolaou, G., Tsogka, C. & Berryman, J. Imaging and time reversal in random media. Inverse Probl. 18, 1247–1279 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  104. 104

    Kuperman, W. & Lynch, J. Shallow-water acoustics. Phys. Today 57, 55–61 (October 2004).

    Google Scholar 

  105. 105

    Derode, A. et al. Taking advantage of multiple scattering to communicate with time reversal antennas. Phys. Rev. Lett. 90, 014301 (2003).

    ADS  Google Scholar 

  106. 106

    Lerosey, G. et al. Time reversal of electromagnetic waves and telecommunication. Radio Sci. 40, RS6S12 (2005).

    Google Scholar 

  107. 107

    Moustakas, A. L., Baranger, H. U., Balents, L., Sengupta, A. M. & Simon, S. H. Communication through a diffusive medium: Coherence and capacity. Science 287, 287–290 (2000).

    ADS  Google Scholar 

  108. 108

    Taddese, B. T., Hart, J., Antonsen, T. M., Ott, E. & Anlage, S. M. Sensor based on extending the concept of fidelity to classical waves. Appl. Phys. Lett. 95, 114103 (2009).

    ADS  Google Scholar 

  109. 109

    Cizmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).

    ADS  Google Scholar 

  110. 110

    Svensson, T., Adolfsson, E., Lewander, M., Xu, C. T. & Svanberg, S. Disordered, strongly scattering porous materials as miniature multipass gas cells. Phys. Rev. Lett. 107, 143901 (2011).

    ADS  Google Scholar 

  111. 111

    Popoff, S. M. et al. Exploiting the time reversal operator for adaptive optics, selective focusing, and scattering pattern analysis. Phys. Rev. Lett. 107, 263901 (2011).

    ADS  Google Scholar 

  112. 112

    Fahrbach, F., Simon, P. & Rohrbach, A. Microscopy with self-reconstructing beams. Nature Photon. 4, 780–785 (2010).

    ADS  Google Scholar 

  113. 113

    Bianchi, S. & Di Leonardo, R. A multi-mode fiber probe for holographic micromanipulation and microscopy. Lab Chip 12, 635–639 (2012).

    Google Scholar 

  114. 114

    Cižmár, T. & Dholakia, K. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express 19, 18871–18884 (2011).

    ADS  Google Scholar 

  115. 115

    Cui, M., McDowell, E. & Yang, C. An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear. Opt. Express 18, 25–30 (2010).

    ADS  Google Scholar 

  116. 116

    Choi, Y. et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett. 107, 023902 (2011).

    ADS  Google Scholar 

  117. 117

    Cui, M. A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media. Opt. Express 19, 2989–2995 (2011).

    ADS  Google Scholar 

  118. 118

    Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20, 1733–1740 (2012).

    ADS  Google Scholar 

  119. 119

    Dela Cruz, J., Pastirk, I., Comstock, M., Lozovoy, V. & Dantus, M. Use of coherent control methods through scattering biological tissue to achieve functional imaging. Proc. Natl Acad. Sci. USA 101, 16996–17001 (2004).

    ADS  Google Scholar 

  120. 120

    Stockman, M. I. Ultrafast nanoplasmonics under coherent control. New J. Phys. 10, 025031 (2008).

    ADS  Google Scholar 

  121. 121

    Skipetrov, S. E. & van Tiggelen, B. A. Dynamics of Anderson localization in open 3D media. Phys. Rev. Lett. 96, 043902 (2006).

    ADS  Google Scholar 

  122. 122

    Aeschlimann, M. et al. Spatiotemporal control of nanooptical excitations. Proc. Natl Acad. Sci. USA 107, 5329–5333 (2010).

    ADS  Google Scholar 

  123. 123

    Sukhov, S. & Dogariu, A. Negative nonconservative forces: Optical 'tractor beams' for arbitrary objects. Phys. Rev. Lett. 107, 203602 (2011).

    ADS  Google Scholar 

  124. 124

    Chong, Y. D. & Stone, A. D. Hidden black: Coherent enhancement of absorption in strongly scattering media. Phys. Rev. Lett. 107, 163901 (2011).

    ADS  Google Scholar 

  125. 125

    Srituravanich, W., Fang, N., Sun, C., Luo, Q. & Zhang, X. Plasmonic nanolithography. Nano Lett. 4, 1085–1088 (2004).

    ADS  Google Scholar 

Download references

Acknowledgements

A.P.M. acknowledges financial support from the European Research Council (grant number 279248). The authors thank E. G. van Putten for providing Fig. 4c.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Allard P. Mosk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mosk, A., Lagendijk, A., Lerosey, G. et al. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon 6, 283–292 (2012). https://doi.org/10.1038/nphoton.2012.88

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing