Laser-driven acceleration of neutral particles


Precise control over the translational motion of atoms and molecules is important for a large range of scientific and industrial processes. Applications range from surface growth and deposition to elucidating the details of chemical reactions through controlled collisions. The critical challenge faced by many experiments is the production of a beam of particles with a narrow velocity spread, a precisely controlled mean velocity, and sufficient flux over a wide range. We demonstrate this fine control of velocity using strong optical fields that trap and accelerate particles up to velocities of hundreds of metres per second. This acceleration occurs over tens of nanoseconds and on micrometre length scales. Particle velocity can be continuously tuned over a wide range while maintaining a narrow velocity spread. Our method is very general and will allow acceleration or deceleration of a wide variety of neutral atomic and molecular species, as well as nanoscale particles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of the accelerator and diagnostics.
Figure 2: Fluorescence images of acceleration using resonant laser excitation at a wavelength of 811.53 nm.
Figure 3: Time-of-flight measurements of the accelerated atomic packet and comparisons with simulations.
Figure 4: Experimental lattice beam characteristics and simulation of acceleration dynamics.


  1. 1

    Scoles, G. (ed.) Atomic and Molecular Beam Methods Vols 1 and 2 (Oxford Univ. Press, 1988, 1992).

  2. 2

    van de Meerakker, S. Y. T., Bethlem, H. L. & Meijer, G. Taming molecular beams. Nature Phys. 4, 595–602 (2008).

  3. 3

    Gupta, M. & Herschbach, D. A mechanical means to produce intense beams of slow molecules. J. Phys. Chem. A 103, 10670–10673 (1999).

  4. 4

    Gupta, M. & Herschbach, D. Slowing and speeding molecular beams by means of a rapidly rotating source. J. Phys. Chem. A 105, 1626–1637 (2001).

  5. 5

    Strebel, M., Stienkemeier, F. & Mudrich, M. Improved setup for producing slow beams of cold molecules using a rotating nozzle. Phys. Rev. A 81, 033409 (2010).

  6. 6

    Lawrence, E. O. & Livingston, M. S. The production of high speed protons without the use of high voltages. Phys. Rev. 38, 834–834 (1931).

  7. 7

    McMillan, E. M. The synchrotron: a proposed high energy particle accelerator. Phys. Rev. 68, 143–144 (1945).

  8. 8

    Bethlem, H. L., Berden, G. & Meijer, G. Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558–1561 (1999).

  9. 9

    Raizen, M. Comprehensive control of atomic motion. Science 324, 1403–1406 (2009).

  10. 10

    Hogan, S. D., Seiler, C. & Merkt, F. Rydberg-state-enabled deceleration and trapping of cold molecules. Phys. Rev. Lett. 103, 123001 (2009).

  11. 11

    Vanhaecke, N., Meier, U., Andrist, M., Meier, B. H. & Merkt, F. Multistage Zeeman deceleration of hydrogen atoms. Phys. Rev. A 75, 031402 (2007).

  12. 12

    Sommer, C. et al. Velocity-selected molecular pulses produced by an electric guide. Phys. Rev. A 82, 013410 (2010).

  13. 13

    Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).

  14. 14

    Dunne, M. Laser-driven particle accelerators. Science 312, 374–376 (2006).

  15. 15

    Prodan, J. W., Phillips, W. & Metcalf, H. Laser production of a very slow monoenergetic atomic beam. Phys. Rev. Lett. 49, 1149–1153 (1982).

  16. 16

    Lu, Z. T. et al. Low-velocity intense source of atoms from a magneto-optical trap. Phys. Rev. Lett. 77, 3331–3334 (1996).

  17. 17

    Fulton, R., Bishop, A. I., Shneider, M. N. & Barker, P. F. Controlling the motion of cold molecules with deep periodic optical potentials. Nature Phys. 2, 465–468 (2006).

  18. 18

    Qiu, M. et al. Observation of Feshbach resonances in the F+H2→HF+H reaction. Science 311, 1440–1443 (2006).

  19. 19

    Gilijamse, J. J., Hoekstra, S., van de Meerakker, S. Y. T., Groenenboom, G. C. & Meijer, G. Near-threshold inelastic collisions using molecular beams with a tunable velocity. Science 313, 1617–1620 (2006).

  20. 20

    Scharfenberg, L., van de Meerakker, S. Y. T. & Meijer, G. Crossed beam scattering experiments with optimized energy resolution. Phys. Chem. Chem. Phys. 13, 8448–8456 (2011).

  21. 21

    Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

  22. 22

    Johnson, K. S. et al. Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998).

  23. 23

    Meschede, D. Atomic nanofabrication: perspectives for serial and parallel deposition. J. Phys. Conf. Ser. 19, 118–124 (2005).

  24. 24

    Anderson, B. P. & Kasevich, M. A. Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998).

  25. 25

    Krems, R. B. F. & Stwalley, W. C. (eds) Cold Molecules: Theory, Experiment, Applications (CRC Press, 2009).

  26. 26

    Krems, R. Molecules near absolute zero and external field control of atomic and molecular dynamics. Int. Rev. Phys. Chem. 24, 99–118 (2005).

  27. 27

    Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

  28. 28

    Assion, A. et al. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919–922 (1998).

  29. 29

    Sussman, B. J., Townsend, D., Ivanov, M. Y. & Stolow, A. Dynamic stark control of photochemical processes. Science 314, 278–381 (2006).

  30. 30

    Barker, P. F. & Shneider, M. N. Optical microlinear accelerator for molecules and atoms. Phys. Rev. A 64, 033408 (2001).

  31. 31

    Peano, F., Vieira, J., Silva, L. O., Mulas, R. & Coppa, G. All-optical trapping and acceleration of heavy particles. New J. Phys. 10, 033028 (2008).

  32. 32

    Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

  33. 33

    Amaldi, U. & Kraft, G. Radiotherapy with beams of carbon ions. Rep. Prog. Phys. 68, 1861–1882 (2005).

  34. 34

    Purcell, S. M. & Barker, P. F. Tailoring the optical dipole force for molecules by field-induced alignment. Phys. Rev. Lett. 103, 153001 (2009).

  35. 35

    Coppendale, N., Wang, L., Douglas, P. & Barker, P. F. A high-energy, chirped laser system for optical stark deceleration. Appl. Phys. B 104, 569–576 (2011).

  36. 36

    Bretislav, B. & Meijer, G. Ultracold physics: molecules riding waves. Nature Phys. 2, 437–438 (2006).

  37. 37

    Eichmann, U., Nubbemeyer, T., Rottke, H. & Sandner, W. Acceleration of neutral atoms in strong short-pulse laser fields. Nature 461, 1261–1264 (2009).

  38. 38

    Katori, H. & Shimizu, F. Laser cooling and trapping of argon and krypton using diode lasers. Jpn J. Appl. Phys. 29, L2124–L2126 (1990).

  39. 39

    Scharfenberg, L. et al. State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms. Phys. Chem. Chem. Phys. 12, 10660–10670 (2010).

  40. 40

    Barker, P. F. & Charlton, M. Directed fluxes of positronium using pulsed travelling optical lattices. New J. Phys. 14, 045005 (2012).

Download references


This research was funded by the UK Engineering and Physical Sciences Research Council.

Author information

C.M.-M. and P.D. were involved in planning the experiment and performed the experimental work and undertook the data analysis. P.F.B. was involved in the planning of the work and the data analysis.

Correspondence to P. F. Barker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 903 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 718 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maher-McWilliams, C., Douglas, P. & Barker, P. Laser-driven acceleration of neutral particles. Nature Photon 6, 386–390 (2012) doi:10.1038/nphoton.2012.87

Download citation

Further reading