Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Laser-driven acceleration of neutral particles

Abstract

Precise control over the translational motion of atoms and molecules is important for a large range of scientific and industrial processes. Applications range from surface growth and deposition to elucidating the details of chemical reactions through controlled collisions. The critical challenge faced by many experiments is the production of a beam of particles with a narrow velocity spread, a precisely controlled mean velocity, and sufficient flux over a wide range. We demonstrate this fine control of velocity using strong optical fields that trap and accelerate particles up to velocities of hundreds of metres per second. This acceleration occurs over tens of nanoseconds and on micrometre length scales. Particle velocity can be continuously tuned over a wide range while maintaining a narrow velocity spread. Our method is very general and will allow acceleration or deceleration of a wide variety of neutral atomic and molecular species, as well as nanoscale particles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the accelerator and diagnostics.
Figure 2: Fluorescence images of acceleration using resonant laser excitation at a wavelength of 811.53 nm.
Figure 3: Time-of-flight measurements of the accelerated atomic packet and comparisons with simulations.
Figure 4: Experimental lattice beam characteristics and simulation of acceleration dynamics.

Similar content being viewed by others

References

  1. Scoles, G. (ed.) Atomic and Molecular Beam Methods Vols 1 and 2 (Oxford Univ. Press, 1988, 1992).

    Google Scholar 

  2. van de Meerakker, S. Y. T., Bethlem, H. L. & Meijer, G. Taming molecular beams. Nature Phys. 4, 595–602 (2008).

    Article  ADS  Google Scholar 

  3. Gupta, M. & Herschbach, D. A mechanical means to produce intense beams of slow molecules. J. Phys. Chem. A 103, 10670–10673 (1999).

    Article  Google Scholar 

  4. Gupta, M. & Herschbach, D. Slowing and speeding molecular beams by means of a rapidly rotating source. J. Phys. Chem. A 105, 1626–1637 (2001).

    Article  Google Scholar 

  5. Strebel, M., Stienkemeier, F. & Mudrich, M. Improved setup for producing slow beams of cold molecules using a rotating nozzle. Phys. Rev. A 81, 033409 (2010).

    Article  ADS  Google Scholar 

  6. Lawrence, E. O. & Livingston, M. S. The production of high speed protons without the use of high voltages. Phys. Rev. 38, 834–834 (1931).

    Article  ADS  Google Scholar 

  7. McMillan, E. M. The synchrotron: a proposed high energy particle accelerator. Phys. Rev. 68, 143–144 (1945).

    Article  ADS  Google Scholar 

  8. Bethlem, H. L., Berden, G. & Meijer, G. Decelerating neutral dipolar molecules. Phys. Rev. Lett. 83, 1558–1561 (1999).

    Article  ADS  Google Scholar 

  9. Raizen, M. Comprehensive control of atomic motion. Science 324, 1403–1406 (2009).

    Article  ADS  Google Scholar 

  10. Hogan, S. D., Seiler, C. & Merkt, F. Rydberg-state-enabled deceleration and trapping of cold molecules. Phys. Rev. Lett. 103, 123001 (2009).

    Article  ADS  Google Scholar 

  11. Vanhaecke, N., Meier, U., Andrist, M., Meier, B. H. & Merkt, F. Multistage Zeeman deceleration of hydrogen atoms. Phys. Rev. A 75, 031402 (2007).

    Article  ADS  Google Scholar 

  12. Sommer, C. et al. Velocity-selected molecular pulses produced by an electric guide. Phys. Rev. A 82, 013410 (2010).

    Article  ADS  Google Scholar 

  13. Faure, J. et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444, 737–739 (2006).

    Article  ADS  Google Scholar 

  14. Dunne, M. Laser-driven particle accelerators. Science 312, 374–376 (2006).

    Article  Google Scholar 

  15. Prodan, J. W., Phillips, W. & Metcalf, H. Laser production of a very slow monoenergetic atomic beam. Phys. Rev. Lett. 49, 1149–1153 (1982).

    Article  ADS  Google Scholar 

  16. Lu, Z. T. et al. Low-velocity intense source of atoms from a magneto-optical trap. Phys. Rev. Lett. 77, 3331–3334 (1996).

    Article  ADS  Google Scholar 

  17. Fulton, R., Bishop, A. I., Shneider, M. N. & Barker, P. F. Controlling the motion of cold molecules with deep periodic optical potentials. Nature Phys. 2, 465–468 (2006).

    Article  ADS  Google Scholar 

  18. Qiu, M. et al. Observation of Feshbach resonances in the F+H2→HF+H reaction. Science 311, 1440–1443 (2006).

    Article  ADS  Google Scholar 

  19. Gilijamse, J. J., Hoekstra, S., van de Meerakker, S. Y. T., Groenenboom, G. C. & Meijer, G. Near-threshold inelastic collisions using molecular beams with a tunable velocity. Science 313, 1617–1620 (2006).

    Article  ADS  Google Scholar 

  20. Scharfenberg, L., van de Meerakker, S. Y. T. & Meijer, G. Crossed beam scattering experiments with optimized energy resolution. Phys. Chem. Chem. Phys. 13, 8448–8456 (2011).

    Article  Google Scholar 

  21. Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

    Article  Google Scholar 

  22. Johnson, K. S. et al. Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280, 1583–1586 (1998).

    Article  ADS  Google Scholar 

  23. Meschede, D. Atomic nanofabrication: perspectives for serial and parallel deposition. J. Phys. Conf. Ser. 19, 118–124 (2005).

    Article  ADS  Google Scholar 

  24. Anderson, B. P. & Kasevich, M. A. Macroscopic quantum interference from atomic tunnel arrays. Science 282, 1686–1689 (1998).

    Article  ADS  Google Scholar 

  25. Krems, R. B. F. & Stwalley, W. C. (eds) Cold Molecules: Theory, Experiment, Applications (CRC Press, 2009).

    Google Scholar 

  26. Krems, R. Molecules near absolute zero and external field control of atomic and molecular dynamics. Int. Rev. Phys. Chem. 24, 99–118 (2005).

    Article  Google Scholar 

  27. Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008).

    Article  Google Scholar 

  28. Assion, A. et al. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919–922 (1998).

    Article  ADS  Google Scholar 

  29. Sussman, B. J., Townsend, D., Ivanov, M. Y. & Stolow, A. Dynamic stark control of photochemical processes. Science 314, 278–381 (2006).

    Article  ADS  Google Scholar 

  30. Barker, P. F. & Shneider, M. N. Optical microlinear accelerator for molecules and atoms. Phys. Rev. A 64, 033408 (2001).

    Article  ADS  Google Scholar 

  31. Peano, F., Vieira, J., Silva, L. O., Mulas, R. & Coppa, G. All-optical trapping and acceleration of heavy particles. New J. Phys. 10, 033028 (2008).

    Article  ADS  Google Scholar 

  32. Tajima, T. & Dawson, J. M. Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979).

    Article  ADS  Google Scholar 

  33. Amaldi, U. & Kraft, G. Radiotherapy with beams of carbon ions. Rep. Prog. Phys. 68, 1861–1882 (2005).

    Article  ADS  Google Scholar 

  34. Purcell, S. M. & Barker, P. F. Tailoring the optical dipole force for molecules by field-induced alignment. Phys. Rev. Lett. 103, 153001 (2009).

    Article  ADS  Google Scholar 

  35. Coppendale, N., Wang, L., Douglas, P. & Barker, P. F. A high-energy, chirped laser system for optical stark deceleration. Appl. Phys. B 104, 569–576 (2011).

    Article  ADS  Google Scholar 

  36. Bretislav, B. & Meijer, G. Ultracold physics: molecules riding waves. Nature Phys. 2, 437–438 (2006).

    Article  Google Scholar 

  37. Eichmann, U., Nubbemeyer, T., Rottke, H. & Sandner, W. Acceleration of neutral atoms in strong short-pulse laser fields. Nature 461, 1261–1264 (2009).

    Article  ADS  Google Scholar 

  38. Katori, H. & Shimizu, F. Laser cooling and trapping of argon and krypton using diode lasers. Jpn J. Appl. Phys. 29, L2124–L2126 (1990).

    Article  ADS  Google Scholar 

  39. Scharfenberg, L. et al. State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms. Phys. Chem. Chem. Phys. 12, 10660–10670 (2010).

    Article  Google Scholar 

  40. Barker, P. F. & Charlton, M. Directed fluxes of positronium using pulsed travelling optical lattices. New J. Phys. 14, 045005 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was funded by the UK Engineering and Physical Sciences Research Council.

Author information

Authors and Affiliations

Authors

Contributions

C.M.-M. and P.D. were involved in planning the experiment and performed the experimental work and undertook the data analysis. P.F.B. was involved in the planning of the work and the data analysis.

Corresponding author

Correspondence to P. F. Barker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 903 kb)

Supplementary Movie 1

Supplementary Movie 1 (MOV 718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maher-McWilliams, C., Douglas, P. & Barker, P. Laser-driven acceleration of neutral particles. Nature Photon 6, 386–390 (2012). https://doi.org/10.1038/nphoton.2012.87

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing