Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observing the localization of light in space and time by ultrafast second-harmonic microscopy

Abstract

Multiple coherent scattering and the constructive interference of certain scattering paths form the common scheme of several remarkable localization phenomena of classical and quantum waves in randomly disordered media1. Prominent examples are electron transport in disordered conductors2,3, the localization of excitons in semiconductor nanostructures4,5, surface plasmon polaritons at rough metallic films6,7 or light in disordered dielectrics8,9,10,11 and amplifying media1,12,13,14. However, direct observation of the fundamental spatiotemporal dynamics of the localization process remains challenging15. This holds true, in particular, for the localization of light occurring on exceedingly short femtosecond timescales and nanometre length scales. Here, we combine second harmonic microscopy with few-cycle time resolution to probe the spatiotemporal localization of light waves in a random dielectric medium. We find lifetimes of the photon modes of several femtoseconds and a broad distribution of the local optical density of states, revealing central hallmarks of the localization of light.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Spatiotemporal localization of light in a ZnO nanoneedle array.
Figure 2: Spatial intensity distribution of the second-harmonic emission.
Figure 3: IFRAC traces.
Figure 4: Simulated Fourier transforms of IFRAC traces and reconstructed local electric fields.
Figure 5: Numerical solutions of Maxwell's equations for light localization inside a randomly distributed array of dielectric cylinders.

References

  1. Abrahams, E. (ed.) 50 Years of Anderson Localization (World Scientific, 2010).

  2. Belitz, D. & Kirkpatrick, T. R. The Anderson–Mott transition. Rev. Mod. Phys. 66, 261–380 (1994).

    ADS  Article  Google Scholar 

  3. Richardella, A. et al. Visualizing critical correlations near the metal–insulator transition in Ga1–xMnxAs. Science 327, 665–669 (2010).

    ADS  Article  Google Scholar 

  4. Hess, H. F., Betzig, E., Harris, T. D., Pfeiffer, L. N. & West, K. W. Near-field spectroscopy of the quantum constituents of a luminescent system. Science 264, 1740–1745 (1994).

    ADS  Article  Google Scholar 

  5. Intonti, F. et al. Quantum mechanical repulsion of exciton levels in a disordered quantum well. Phys. Rev. Lett. 87, 076801 (2001).

    ADS  Article  Google Scholar 

  6. Gresillon, S. et al. Experimental observation of localized optical excitations in random metal–dielectric films. Phys. Rev. Lett. 82, 4520–4523 (1999).

    ADS  Article  Google Scholar 

  7. Stockman, M. I. Femtosecond optical responses of disordered clusters, composites, and rough surfaces: ‘the ninth wave’ effect. Phys. Rev. Lett. 84, 1011–1014 (2000).

    ADS  Article  Google Scholar 

  8. Sapienza, L. et al. Cavity quantum electrodynamics with Anderson-localized modes. Science 327, 1352–1355 (2010).

    ADS  Article  Google Scholar 

  9. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

    ADS  Article  Google Scholar 

  10. Albada, M. P. V. & Lagendijk, A. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 55, 2692–2695 (1985).

    ADS  Article  Google Scholar 

  11. Wolf, P.-E. & Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696–2699 (1985).

    ADS  Article  Google Scholar 

  12. Wiersma, D. S., van Albada, M. P. & Lagendijk, A. Coherent backscattering of light from amplifying random media. Phys. Rev. Lett. 75, 1739–1742 (1995).

    ADS  Article  Google Scholar 

  13. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999).

    ADS  Article  Google Scholar 

  14. Fallert, J. et al. Co-existence of strongly and weakly localized random laser modes. Nature Photon. 3, 279–282 (2009).

    ADS  Article  Google Scholar 

  15. Wang, J. & Genack, A. Z. Transport through modes in random media. Nature 471, 345–348 (2011).

    ADS  Article  Google Scholar 

  16. Sheng, P. Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Springer, 2006).

  17. Evers, F. & Mirlin, A. D. Anderson transitions. Rev. Mod. Phys. 80, 1355–1417 (2008).

    ADS  Article  Google Scholar 

  18. Schreiber, M. & Grussbach, H. Multifractal wave functions at the Anderson transition. Phys. Rev. Lett. 67, 607–610 (1991).

    ADS  Article  Google Scholar 

  19. Riboli, F. et al. Anderson localization of near-visible light in two dimensions. Opt. Lett. 36, 127–129 (2011).

    ADS  Article  Google Scholar 

  20. Chabanov, A. A., Stoytchev, M. & Genack, A. Z. Statistical signatures of photon localization. Nature 404, 850–853 (2000).

    ADS  Article  Google Scholar 

  21. Hu, H., Strybulevych, A., Page, J. H., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nature Phys. 4, 945–948 (2008).

    ADS  Article  Google Scholar 

  22. Nieuwenhuizen, T. M. & van Rossum, M. C. W. Intensity distributions of waves transmitted through a multiple scattering medium. Phys. Rev. Lett. 74, 2674–2677 (1995).

    ADS  Article  Google Scholar 

  23. Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

    ADS  Article  Google Scholar 

  24. Djurišić, A. B. & Leung, Y. H. Optical properties of ZnO nanostructures. Small 2, 944–961 (2006).

    Article  Google Scholar 

  25. Kitamura, K. et al. Fabrication of vertically aligned ultrafine ZnO nanorods using metal–organic vapor phase epitaxy with a two-temperature growth method. Nanotechnology 19, 175305 (2008).

    ADS  Article  Google Scholar 

  26. Piglosiewicz, B. et al. Ultrasmall bullets of light-focusing few-cycle light pulses to the diffraction limit. Opt. Express 19, 14451–14463 (2011).

    ADS  Article  Google Scholar 

  27. Stibenz, G. & Steinmeyer, G. Interferometric frequency-resolved optical gating. Opt. Express 13, 2617–2626 (2005).

    ADS  Article  Google Scholar 

  28. Tritschler, T., Mücke, O. D., Wegener, M., Morgner, U. & Kärtner, F. X. Evidence for third-harmonic generation in disguise of second-harmonic generation in extreme nonlinear optics. Phys. Rev. Lett. 90, 217404 (2003).

    ADS  Article  Google Scholar 

  29. Schmidt, S. et al. Distinguishing between ultrafast optical harmonic generation and multi-photon-induced luminescence from ZnO thin films by frequency-resolved interferometric autocorrelation microscopy. Opt. Express 18, 25016–25028 (2010).

    ADS  Article  Google Scholar 

  30. Mirlin, A. D. Statistics of energy levels and eigenfunctions in disordered systems. Phys. Rep. 326, 259–382 (2000).

    ADS  MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Japan Science and Technology Agency (JST) and the Deutsche Forschungsgemeinschaft (DFG) within the ‘Nanoelectronics’ programme. The authors acknowledge support in Germany by the DFG (priority programme ‘Ultrafast nanooptics’, SPP 1391) and by the Korea Foundation for International Cooperation of Science & Technology (Global Research Laboratory project K20815000003). Support in Japan through a Grant-in-Aid for Young Scientists (A) from MEXT and a research grant (Basic Research) from The TEPCO Memorial Foundation is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

C.L., E.R. and M.O. conceived the experiment. M.M. and S.S. carried out the measurements and analysed the data, together with M.S. and C.L. The samples were fabricated by K.K. and T.Y. FDTD simulations were performed by D.L. The manuscript was prepared by M.M., M.S., D.L., E.R. and C.L. All authors contributed to finalizing the manuscript.

Corresponding author

Correspondence to Christoph Lienau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1777 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mascheck, M., Schmidt, S., Silies, M. et al. Observing the localization of light in space and time by ultrafast second-harmonic microscopy. Nature Photon 6, 293–298 (2012). https://doi.org/10.1038/nphoton.2012.69

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.69

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing