Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phase-locked coherent modes in a patterned metal–organic microcavity

Abstract

Organic microcavities offer tantalizing prospects for studying the interactions of light and matter. For electrical excitation of these processes, electrodes must be integrated. However, the large absorption properties of metals are generally considered fatal for optical coherence. With this in mind, we embedded a thin silver grating into an organic microcavity to generate periodic arrays of localized cavity modes and metal-based Tamm plasmon polaritons. These excited states are capable of phase coupling across the grating. At room temperature and under non-resonant pumping, we selectively stimulated coherent emission from in- and out-of-phase locked arrays. We show that an absorptive metal inside an optical cavity is compatible with coherent emission. Most importantly, the inherently low residual absorption of the organic layer enables coherence to spread over macroscopic distances, even at room temperature. Our strategy of embedding metal patterns into an organic microcavity yields a viable route towards electrically driven organic solid-state lasers.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organo–metallic microcavity and emission spectra.
Figure 2: Analysis of the resonances.
Figure 3: Coherent emission from a periodically patterned microcavity.

References

  1. Weissman, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  2. Malpuech, G., Kavokin, A., Di Carlo, A. & Baumberg, J. J. Polariton lasing by exciton–electron scattering in semiconductor microcavities. Phys. Rev. B 65, 153310 (2002).

    Article  ADS  Google Scholar 

  3. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    Article  ADS  Google Scholar 

  4. Utsunomiya, S. et al. Observation of Bogoliubov excitations in exciton–polariton condensates. Nature Phys. 4, 700–705 (2008).

    Article  Google Scholar 

  5. Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    Article  ADS  Google Scholar 

  6. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  7. Reithmaier, J. P. et al. Size dependence of confined optical modes in photonic quantum dots. Phys. Rev. Lett. 78, 378–381 (1997).

    Article  ADS  Google Scholar 

  8. Bayer, M. et al. Optical modes in photonic molecules. Phys. Rev. Lett. 81, 2582–2585 (1998).

    Article  ADS  Google Scholar 

  9. Cerda-Mendez, E. et al. Polariton condensation in dynamic acoustic lattices. Phys. Rev. Lett. 105, 116402 (2010).

    Article  ADS  Google Scholar 

  10. Richard, M. et al. Experimental evidence for nonequilibrium Bose condensation of exciton polaritons. Phys. Rev. B 72, 201301(R) (2005).

    Article  ADS  Google Scholar 

  11. Wouters, M. Synchronized and desynchronized phases of coupled nonequilibrium exciton–polariton condensates. Phys. Rev. B 77, 121302(R) (2008).

    Article  ADS  Google Scholar 

  12. Kena-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).

    Article  ADS  Google Scholar 

  13. Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 468, 545–548 (2010).

    Article  ADS  Google Scholar 

  14. Kersting, R. et al. Femtosecond energy relaxation in π-conjugated polymers. Phys. Rev. Lett. 70, 3820–3823 (1993).

    Article  ADS  Google Scholar 

  15. Brückner, R. et al. Hybrid optical Tamm states in a planar dielectric microcavity. Phys. Rev. B 83, 033405 (2011).

    Article  ADS  Google Scholar 

  16. Sasin, M. E. et al. Tamm plasmon polaritons: slow and spatially compact light. Appl. Phys. Lett. 92, 251112 (2008).

    Article  ADS  Google Scholar 

  17. Kaliteevski, M. et al. Tamm plasmon-polaritons: possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B 76, 165415 (2007).

    Article  ADS  Google Scholar 

  18. Kaliteevski, M. et al. Hybrid states of Tamm plasmons and exciton polaritons. Appl. Phys. Lett. 9, 251108 (2009).

    Article  ADS  Google Scholar 

  19. Brückner, R., Sudzius, M., Fröb, H., Lyssenko, V. G. & Leo, K. Saturation of laser emission in a small mode volume organic microcavity. J. Appl. Phys. 109, 103116 (2011).

    Article  ADS  Google Scholar 

  20. Langner, M. et al. Strong optical confinement and multimode emission of organic photonic dots. Appl. Phys. Lett. 91, 181119 (2007).

    Article  ADS  Google Scholar 

  21. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

    Book  Google Scholar 

  22. Søndergaard, T. & Bozhevolnyi, S. I. Strip and gap plasmon polariton optical resonators. Phys. Status Solidi (b) 245, 9–19 (2008).

    Article  ADS  Google Scholar 

  23. Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007).

    Article  ADS  Google Scholar 

  24. Bulović, V., Kozlov, V. G., Khalfin, V. B. & Forrest, S. R. Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities. Science 279, 553–555 (1998).

    Article  ADS  Google Scholar 

  25. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG projects LE 747/37-1 and LE 747/41-1) and by the Bundesministerium für Bildung und Forschung (BMBF) through the InnoProfile Project (03IP602). A.Z. gratefully acknowledges financial support as a fellow of the Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.B. and A.A.Z. designed and produced the sample. V.G.L. built the microphotoluminescence set-up. R.B. and V.G.L. performed the angle- and spatially resolved measurements. R.S. and R.B. calculated the dispersions and performed the Fourier analysis. S.I.H., H.F. and K.L. coordinated the DFG projects and motivated the work. All authors discussed the data and wrote the manuscript.

Corresponding author

Correspondence to K. Leo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brückner, R., Zakhidov, A., Scholz, R. et al. Phase-locked coherent modes in a patterned metal–organic microcavity. Nature Photon 6, 322–326 (2012). https://doi.org/10.1038/nphoton.2012.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.49

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing