Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advances in multiphoton microscopy technology

Abstract

Multiphoton microscopy has enabled unprecedented dynamic exploration in living organisms. A significant challenge in biological research is the dynamic imaging of features deep within living organisms, which permits the real-time analysis of cellular structure and function. To make progress in our understanding of biological machinery, optical microscopes must be capable of rapid, targeted access deep within samples at high resolution. In this Review, we discuss the basic architecture of a multiphoton microscope capable of such analysis and summarize the state-of-the-art technologies for the quantitative imaging of biological phenomena.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A typical multiphoton microscope fed by a near-IR laser.
Figure 2: Multimodal image of a blood vessel in kidney tissue.
Figure 3: Illustrative fluorescence lifetime image with two similar fluorophores and comparison to TPEF imaging.
Figure 4: Example of deep in vivo imaging through the use of longer excitation wavelengths.
Figure 5: Simultaneous multilayer imaging achieved with remote focusing.

References

  1. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    ADS  Article  Google Scholar 

  2. Peleg, G., Lewis, A., Linial, M. & Loew, L. M. Nonlinear optical measurement of membrane potential around single molecules at selected cellular sites. Proc. Natl Acad. Sci. USA 96, 6700–6704 (1999).

    ADS  Google Scholar 

  3. Chu, S. W. et al. In vivo developmental biology study using noninvasive multi-harmonic generation microscopy. Opt. Express 11, 3093–3099 (2003).

    ADS  Google Scholar 

  4. Cheng, A., Gonçalves, J. T., Golshani, P., Arisaka, K. & Portera-Cailliau, C. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat. Methods 8, 139–142 (2011).

    Google Scholar 

  5. Stelzer, E. H. et al. Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume. Opt. Commun. 104, 223–228 (1994).

    ADS  Google Scholar 

  6. Chen, I. H., Chu, S. W., Sun, C. K., Cheng, P. C. & Lin, B. L. Wavelength dependent damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources. Opt. Quant. Electron. 34, 1251–1266 (2002).

    Google Scholar 

  7. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Google Scholar 

  8. Yaroslavsky, A. N. et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Phys. Med. Biol. 47, 2059–2073 (2002).

    Google Scholar 

  9. Theer, P. & Denk, W. On the fundamental imaging-depth limit in two-photon microscopy. J. Opt. Soc. Am. A 23, 3139–3149 (2006).

    ADS  Google Scholar 

  10. Kobat, D. et al. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 17, 13354–13364 (2009).

    ADS  Google Scholar 

  11. Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    Google Scholar 

  12. Barad, Y., Eisenberg, H., Horowitz, M. & Silberberg, Y. Nonlinear scanning laser microscopy by third harmonic generation. Appl. Phys. Lett. 70, 922–924 (1997).

    ADS  Google Scholar 

  13. Masihzadeh, O., Schlup, P. & Bartels, R. A. Label-free second harmonic generation holographic microscopy of biological specimens. Opt. Express 18, 9840–9851 (2010).

    ADS  Google Scholar 

  14. Zhuo, S. et al. Label-free monitoring of colonic cancer progression using multiphoton microscopy. Biomed. Opt. Express 2, 615–619 (2011).

    Google Scholar 

  15. Segawa, H. et al. Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation). Opt. Express 20, 9551–9557 (2012).

    ADS  Google Scholar 

  16. Theer, P., Hasan, M. T. & Denk, W. Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt. Lett. 28, 1022–1024 (2003).

    ADS  Google Scholar 

  17. Yue, S., Slipchenko, M. & Cheng, J. X. Multimodal nonlinear optical microscopy. Las. Photon. Rev. 5, 496–512 (2011).

    ADS  Google Scholar 

  18. Chung, C. Y., Boik, J. & Potma, E. O. Biomolecular imaging with coherent nonlinear vibrational microscopy. Ann. Rev. Phys. Chem. 64, 77–99 (2013).

    ADS  Google Scholar 

  19. Larson, A. & Yeh, A. Ex vivo characterization of sub-10-fs pulses. Opt. Lett. 31, 1681–1683 (2006).

    ADS  Google Scholar 

  20. Pestov, D., Xu, B., Li, H. & Dantus, M. Delivery and characterization of sub-8fs laser pulses at the imaging plane of a two-photon microscope. Proc. SPIE 7903, 79033B (2011).

    ADS  Google Scholar 

  21. Selm, R., Krauss, G., Leitenstorfer, A. & Zumbusch, A. Simultaneous second-harmonic generation, third-harmonic generation, and four-wave mixing microscopy with single sub-8 fs laser pulses. Appl. Phys. Lett. 99, 181124 (2011).

    ADS  Google Scholar 

  22. Zipfel, W., Williams, R. & Webb, W. W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nature Biotechnol. 21, 1369–1377 (2003).

    Google Scholar 

  23. Mertz, J. Nonlinear microscopy: New techniques and applications. Curr. Opin. Neurobiol. 14, 610–616 (2004).

    Google Scholar 

  24. Svoboda, K. & Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839 (2006).

    Google Scholar 

  25. Sheetz, K. E. & Squier, J. Ultrafast optics: Imaging and manipulating biological systems. J. Appl. Phys. 105, 051101 (2009).

    ADS  Google Scholar 

  26. Carriles, R. et al. Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev. Sci. Instr. 80, 081101 (2009).

    ADS  Google Scholar 

  27. Field, J. et al. Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation. Opt. Express 18, 13661–13672 (2010).

    ADS  Google Scholar 

  28. Gannaway, J. N. & Sheppard, C. J. R. Second-harmonic imaging in the scanning optical microscope. Opt. Quant. Electron. 10, 435–439 (1978).

    Google Scholar 

  29. Raghunathan, V., Han, Y., Korth, O., Ge, N. H. & Potma, E. Rapid vibrational imaging with sum frequency generation microscopy. Opt. Lett. 30, 3891–3893 (2011).

    ADS  Google Scholar 

  30. Fu, D. et al. Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy. J. Am. Chem. Soc. 134, 3623–3626 (2012).

    Google Scholar 

  31. Zumbusch, A., Holtom, G. R. & Xie, X. S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett. 82, 4142–4145 (1999).

    ADS  Google Scholar 

  32. Chen, H. et al. A multimodal platform for nonlinear optical microscopy and microspectroscopy. Opt. Express 17, 1282–1290 (2009).

    ADS  Google Scholar 

  33. Becker, W. & Bergmann, A. Lifetime-resolved imaging in nonlinear microscopy in Handbook of Biomedical Nonlinear Optical Microscopy (eds Masters, B. & So, P.) 499–556 (Oxford University, 2008).

    Google Scholar 

  34. Becker, W. et al. Fluorescence lifetime imaging by time-correlated single photon counting. Microsc. Res. Tech. 63, 58–66 (2004).

    Google Scholar 

  35. Driscoll, J. D. et al. Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy. J. Neurophysiol. 105, 3106–3113 (2011).

    Google Scholar 

  36. Pastrirk, I., Cruz, J., Walowicz, K., Lozovoy, V. & Dantus, M. Selective two-photon microscopy with shaped femtosecond pulses. Opt. Express 11, 1695–1701 (2003).

    ADS  Google Scholar 

  37. Cruz, J., Pastirk, I., Comstock, M., Lozovoy, V. & Dantus, M. Use of coherent control methods through scattering biological tissue to achieve functional imaging. Proc. Natl Acad. Sci. USA 101, 16996–17001 (2004).

    ADS  Google Scholar 

  38. Cruz, J., Pastirk, I., Comstock, M. & Dantus, M. Multiphoton intrapulse interference: Coherent control through scattering tissue. Opt. Express 12, 4144–4149 (2004).

    ADS  Google Scholar 

  39. Meshulach, D. & Silberberg, Y. Coherent quantum control of two-photon transitions by a femtosecond laser pulse. Nature 396, 239–242 (1998).

    ADS  Google Scholar 

  40. Pillai, R. et al. Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses. Opt. Express 17, 12741–12752 (2009).

    ADS  Google Scholar 

  41. Fischer, M. et al. Two-photon absorption and self-phase modulation measurements with shaped femtosecond laser pulses. Opt. Lett. 30, 1551–1553 (2005).

    ADS  Google Scholar 

  42. Fischer, M., Liu, H., Piletic, I. & Warren, W. Simultaneous self-phase modulation and two-photon absorption measurement by a spectral homodyne Z-scan method. Opt. Express 16, 4192–4205 (2008).

    ADS  Google Scholar 

  43. Fischer, M. et al. Self-phase modulation signatures of neuronal activity. Opt. Lett. 33, 219–221 (2008).

    ADS  Google Scholar 

  44. Beaurepaire, E., Oheim, M. & Mertz, J. Ultra-deep two-photon fluorescence excitation in turbid media. Opt. Commun. 188, 25–29 (2001).

    ADS  Google Scholar 

  45. Ohem, M., Beaurepaire, E., Chaigneau, E., Mertz, J. & Charpak, S. Two-photon microsscopy in brain tissue: Parameters influencing the imaging depth. J. Neurosci. Meth. 111, 29–37 (2001).

    Google Scholar 

  46. Buehler, C., Kim, K. H., Dong, C. Y., Masters, B. & So, P. T. C. Innovations in two-photon deep tissue microscopy. Eng. Med. Biol. Mag. 18, 23–30 (1999).

    Google Scholar 

  47. Kobat, D., Horton, N. G. & Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 16, 106014 (2011).

    ADS  Google Scholar 

  48. Balu, M. et al. Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media. J. Biomed. Opt. 14, 010508 (2009).

    ADS  Google Scholar 

  49. Chu, S. W. et al. Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser. Opt. Lett. 26, 1909–1911 (2001).

    ADS  Google Scholar 

  50. Levene, M. J., Dombeck, D. A., Kasischke, K. A., Molloy, R. P. & Webb, W. W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004).

    Google Scholar 

  51. Jung, W. et al. Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy. Opt. Lett. 33, 1324–1326 (2008).

    ADS  Google Scholar 

  52. Chia, S. H. et al. Miniaturized video-rate epi-third-harmonic-generation fiber-microscope. Opt. Express 18, 17382–17391 (2010).

    ADS  Google Scholar 

  53. Saar, B. G., Johnston, R. S., Freudiger, C. W., Xie, X. S. & Seibel, E. J. Coherent Raman scanning fiber endoscopy. Opt. Lett. 36, 2396–2398 (2011).

    ADS  Google Scholar 

  54. Rivera, D. R., Brown, C. M., Ouzounov, D. G., Webb, W. W. & Xu, C. Multifocal multiphoton endoscope. Opt. Lett. 37, 1349–1351 (2012).

    ADS  Google Scholar 

  55. Martini, J. et al. Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. J. Struct. Biol. 158, 401–409 (2007).

    Google Scholar 

  56. Chen, Z., Wei, L., Zhu, X. & Min, W. Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores. Opt. Express 20, 18525–18536 (2012).

    ADS  Google Scholar 

  57. Cheng, P. C. et al. Highly efficient upconverters for multiphoton fluorescence microscopy. J. Microsc. 189, 199–212 (1998).

    Google Scholar 

  58. Extermann, J. et al. Nanodoublers as deep imaging markers for multi-photon microscopy. Opt. Express 17, 15342–15349 (2009).

    ADS  Google Scholar 

  59. Zinter, J. P. & Levene, M. J. Maximizing fluorescence collection efficiency in multiphoton microscopy. Opt. Express 19, 15348–15362 (2011).

    ADS  Google Scholar 

  60. Amir, W. et al. Simultaneous imaging of multiple focal planes using a two-photon scanning microscope. Opt. Lett. 32, 1731–1733 (2007).

    ADS  Google Scholar 

  61. Carriles, R., Sheetz, K. E., Hoover, E. E., Squier, J. A. & Barzda, V. Simultaneous multifocal, multiphoton, photon counting microscopy. Opt. Express 16, 10364–10371 (2008).

    ADS  Google Scholar 

  62. Benninger, R. K. P., Ashby, W. J., Ring, E. A. & Piston, D. W. Single-photon-counting detector for increased sensitivity in two-photon laser scanning microscopy. Opt. Lett. 33, 2895–2897 (2008).

    ADS  Google Scholar 

  63. Sandkuijl, D., Cisek, R., Major, A. & Barzda, V. Differential microscopy for fluorescence-detected nonlinear absorption linear anisotropy based on a staggered two-beam femtosecond Yb:KGW oscillator. Biomed. Opt. Express 1, 895–901 (2010).

    Google Scholar 

  64. Sherman, L., Ye, J. Y., Albert, O. & Norris, T. B. Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror. J. Microsc. 206, 65–71 (2002).

    MathSciNet  Google Scholar 

  65. Neil, M. A. A. et al. Adaptive aberration correction in a two-photon microscope. J. Microsc. 200, 105–108 (2000).

    Google Scholar 

  66. Albert, O., Sherman, L., Mourou, G. & Norris, T. B. Smart microscope: An adaptive optics learning system for aberration correction in multiphoton confocal microscopy. Opt. Lett. 25, 52–54 (2000).

    ADS  Google Scholar 

  67. Booth, M. J., Neil, M. A. A., Juškaitis, R. & Wilson, T. Adaptive aberration correction in a confocal microscope. Proc. Natl Acad. Sci. USA 99, 5788–5792 (2002).

    ADS  Google Scholar 

  68. Ji, N., Milkie, D. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat. Methods 7, 141–147 (2009).

    Google Scholar 

  69. Leray, A. & Mertz, J. Rejection of two-photon fluorescence background in thick tissues by differential aberration imaging. Opt. Express 14, 10565–10573 (2006).

    ADS  Google Scholar 

  70. Girkin, J. M., Poland, S. & Wright, A. J. Adaptive optics for deeper imaging of biological samples. Curr. Opin. Biotechnol. 20, 106–110 (2009).

    Google Scholar 

  71. Facomprez, A., Beaurepaire, E. & Débarre, D. Accuracy of correction in modal sensorless adaptive optics. Opt. Express 20, 2598–2612 (2012).

    ADS  Google Scholar 

  72. Bewersdorf, J., Pick, R. & Hell, S. W. Multifocal multiphoton microscopy. Opt. Lett. 23, 655–657 (1998).

    ADS  Google Scholar 

  73. Buist, A. H., Müller, M., Squier, J. & Brakenhoff, G. J. Real time two-photon absorption microscopy using multi point excitation. J. Microsc. 192, 217–226 (1998).

    Google Scholar 

  74. Straub, M. & Hell, S. W. Multifocal multiphoton microscopy: A fast and efficient tool for 3-D fluorescence imaging. Bioimaging 6, 177–185 (1998).

    Google Scholar 

  75. Egner, A. & Hell, S. W. Time multiplexing and parallelization in multifocal multiphoton microscopy. J. Opt. Soc. Am. A 17, 1192–201 (2000).

    ADS  Google Scholar 

  76. Nielsen, T., Fricke, M., Hellweg, D. & Andresen, P. High efficiency beam splitter for multifocal multiphoton microscopy. J. Microsc. 201, 368–376 (2001).

    MathSciNet  Google Scholar 

  77. Bahlmann, K. et al. Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz. Opt. Express 15, 10991–10998 (2007).

    ADS  Google Scholar 

  78. Niesner, R., Andresen, V., Neumann, J., Spiecker, H. & Gunzer, M. The power of single and multibeam two-photon microscopy for high-resolution and high-speed deep tissue and intravital imaging. Biophys. J. 93, 2519–2529 (2007).

    ADS  Google Scholar 

  79. Kim, K. H. et al. Multifocal multiphoton microscopy based on multianode photomultiplier tubes. Opt. Express 15, 11658–11678 (2007).

    ADS  Google Scholar 

  80. Lee, A. M. D. et al. In vivo video rate multiphoton microscopy imaging of human skin. Opt. Lett. 36, 2865–2867 (2011).

    ADS  Google Scholar 

  81. Fan, G., Fujisaki, H., Miyakawi, A., Tsien, R. & Ellisman, M. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with chameleons. Biophys. J. 76, 2412–2420 (1999).

    Google Scholar 

  82. Veilleux, I., Spencer, J. A., Biss, D. P., Côtè, D. & Lin, C. P. In vivo cell tracking with video rate multimodality laser scanning microscopy. IEEE J. Sel. Top. Quant. Electron. 14, 10–18 (2008).

    ADS  Google Scholar 

  83. Grewe, B. F., Voigt, F. F., van't Hoff, M. & Helmchen, F. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Express 2, 2035–2046 (2011).

    Google Scholar 

  84. Bullen, A., Patel, S. & Saggau, P. High-speed, random-access fluorescence microscopy: I. High-resolution optical recording with voltage-sensitive dyes and ion indicators. Biophys. J. 73, 477–491 (1997).

    Google Scholar 

  85. Shao, Y. et al. Ultrafast, large-field multiphoton microscopy based on an acousto-optic deflector and a spatial light modulator. Opt. Lett. 37, 2532–2534 (2012).

    ADS  Google Scholar 

  86. Saloméa, R. et al. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J. Neurosci. Meth. 154, 161–74 (2006).

    Google Scholar 

  87. Reddy, G. D., Kelleher, K., Fink, R. & Saggau, P. Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nature Neurosci. 11, 713–720 (2008).

    Google Scholar 

  88. Koenig, K., Liang, H., Berns, M. & Tromberg, B. J. Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption. Opt. Lett. 21, 1090–1092 (1996).

    ADS  Google Scholar 

  89. Kirkby, P. A., Nadella, K. M. N. S. & Silver, R. A. A compact acousto-optic lens for 2D and 3D femtosecond based 2-photon microscopy. Opt. Express 18, 13721–13745 (2010).

    ADS  Google Scholar 

  90. Kremer, Y. et al. A spatio-temporally compensated acousto-optic scanner for two-photon microscopy providing large field of view. Opt. Express 16, 10066–10076 (2008).

    ADS  Google Scholar 

  91. Botcherby, E. J. et al. Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates. Proc. Natl Acad. Sci. USA 109, 2919–2924 (2012).

    ADS  Google Scholar 

  92. Brakenhoff, G. J. et al. Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system. J. Microsc. 181, 253–259 (1996).

    Google Scholar 

  93. Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005).

    ADS  Google Scholar 

  94. Zhu, G., van Howe, J., Durst, M., Zipfel, W. R. & Xu, C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 13, 2153–2159 (2005).

    ADS  Google Scholar 

  95. Therrien, O. D., Aubé, B., Pagès, S., De Koninck, P. & Côtè, D. Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination. Biomed. Opt. Express 2, 696–704 (2011).

    Google Scholar 

  96. Cheng, L. C. et al. Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning. Opt. Express 20, 8939–8948 (2012).

    ADS  Google Scholar 

  97. Durst, M. E., Zhu, G. & Xu, C. Simultaneous spatial and temporal focusing in nonlinear microscopy. Opt. Commun. 281, 1796–1805 (2008).

    ADS  Google Scholar 

  98. Durst, M. E., Straub, A. A. & Xu, C. Enhanced axial confinement of sum-frequency generation in a temporal focusing setup. Opt. Lett. 34, 1786–1788 (2009).

    ADS  Google Scholar 

  99. Mohanty, S. K. et al. In-depth activation of channelrhodopsin 2-sensitized excitable cells with high spatial resolution using two-photon excitation with a near-infrared laser microbeam. Biophys. J. 95, 3916–3926 (2008).

    ADS  Google Scholar 

  100. Andrasfalvy, B. K., Zemelman, B. V., Tang, J. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl Acad. Sci. USA 107, 11981–11986 (2010).

    ADS  Google Scholar 

  101. Botcherby, E. J., Booth, M. J., Juškaitis, R. & Wilson, T. Real-time extended depth of field microscopy. Opt. Express 16, 21843–21848 (2008).

    ADS  Google Scholar 

  102. Botcherby, E. J., Booth, M. J., Juškaitis, R. & Wilson, T. Real-time slit scanning microscopy in the meridional plane. Opt. Lett. 34, 1504–1506 (2009).

    ADS  Google Scholar 

  103. Hoover, E. E. et al. Remote focusing for programmable multi-layer differential multiphoton microscopy. Biomed. Opt. Express 2, 113–122 (2010).

    Google Scholar 

  104. Anselmi, F., Ventalon, C., Bègue, A., Ogden, D. & Emiliani, V. Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning. Proc. Natl Acad. Sci. USA 108, 19504–19509 (2011).

    ADS  Google Scholar 

  105. Hoover, E. E. et al. Eliminating the scattering ambiguity in multifocal, multimodal, multiphoton imaging systems. J. Biophoton. 5, 425–436 (2012).

    Google Scholar 

  106. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated emission depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    ADS  Google Scholar 

  107. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS  Google Scholar 

  108. Huang, B., Wenqin, W. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    ADS  Google Scholar 

  109. Hell, S. W., Schmidt, R. & Egner, A. Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses. Nature Photon. 3, 381–387 (2009).

    ADS  Google Scholar 

  110. Wachsmann-Hogiu, S. & Farkas, D. L. Nonlinear multispectral optical imaging microscopy: Concepts, instrumentation, and applications in Handbook of Biomedical Nonlinear Optical Microscopy 461–480 (Oxford University, 2008).

    Google Scholar 

  111. Truong, T., Supatto, W., Koos, D., Choi, J. & Fraser, S. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8, 757–760 (2011).

    Google Scholar 

Download references

Acknowledgements

The authors recognize the support of the National Institute of Biomedical Imaging and Bioengineering under the Bioengineering Research Partnership EB-003832. In addition, the authors thank E. Toberer for his assistance in preparing portions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erich E. Hoover or Jeff A. Squier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoover, E., Squier, J. Advances in multiphoton microscopy technology. Nature Photon 7, 93–101 (2013). https://doi.org/10.1038/nphoton.2012.361

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.361

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing