Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum-state transfer from an ion to a photon

Subjects

Abstract

One model for quantum networks1,2 is based on the probabilistic measurement of two photons, each entangled with a distant node, such as an atom or atomic ensemble3,4,5,6,7. A second, deterministic model transfers information directly from an atom onto a cavity photon, which carries it to a second node8, as recently demonstrated with neutral atoms9. In both cases, the challenge is to transfer information efficiently while preserving coherence. Here, following the second scheme, we map the quantum state of an ion onto a photon within an optical cavity. Using an ion enables deterministic state initialization10,11, while the cavity provides coherent coupling to a well-defined output mode12,13,14,15. Although it is often assumed that a cavity-based quantum interface requires the strong coupling regime, we show transfer fidelities of 92% in the presence of non-negligible decoherence and characterize the interplay between fidelity and efficiency. Our time-independent mapping process offers a promising route towards ion-based quantum networks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental configuration and mapping sequence.
Figure 2: Process and state fidelities of the ion–photon mapping.
Figure 3: Time dependence of process fidelity and efficiency.

Similar content being viewed by others

References

  1. Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article  ADS  Google Scholar 

  2. Duan, L-M. & Monroe, C. Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010).

    Article  ADS  Google Scholar 

  3. Duan, L-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  4. Browne, D. E., Plenio, M. B. & Huelga, S. F. Robust creation of entanglement between ions in spatially separate cavities. Phys. Rev. Lett. 91, 067901 (2003).

    Article  ADS  Google Scholar 

  5. Chou, C-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).

    Article  ADS  Google Scholar 

  6. Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    Article  ADS  Google Scholar 

  7. Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).

    Article  ADS  Google Scholar 

  8. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  Google Scholar 

  9. Ritter, S. et al. An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012).

    Article  ADS  Google Scholar 

  10. Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    Article  ADS  Google Scholar 

  11. Häffner, H., Roos, C. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  12. McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004).

    Article  ADS  Google Scholar 

  13. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

    Article  ADS  Google Scholar 

  14. Hijlkema, M. et al. A single-photon server with just one atom. Nature Phys. 3, 253–255 (2007).

    Article  ADS  Google Scholar 

  15. Barros, H. G. et al. Deterministic single-photon source from a single ion. New J. Phys. 11, 103004 (2009).

    Article  ADS  Google Scholar 

  16. Cirac, J. I., Ekert, A. K., Huelga, S. F. & Macchiavello, C. Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249–4254 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  17. Barrett, S. D. & Kok, P. Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310 (2005).

    Article  ADS  Google Scholar 

  18. Lim, Y. L., Beige, A. & Kwek, L. C. Repeat-until-success linear optics distributed quantum computing. Phys. Rev. Lett. 95, 030505 (2005).

    Article  ADS  Google Scholar 

  19. Briegel, H-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  20. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000).

    Article  Google Scholar 

  21. Boozer, A. D., Boca, A., Miller, R., Northup, T. E. & Kimble, H. J. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett. 98, 193601 (2007).

    Article  ADS  Google Scholar 

  22. Stute, A. et al. Toward an ion-photon quantum interface in an optical cavity. Appl. Phys. B 107, 1145–1157 (2012).

    Article  ADS  Google Scholar 

  23. Stute, A. et al. Tunable ion–photon entanglement in an optical cavity. Nature 485, 482–485 (2012).

    Article  ADS  Google Scholar 

  24. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  ADS  Google Scholar 

  25. Ježek, M., Fiurášek, J. & Hradil, Z. Quantum inference of states and processes. Phys. Rev. A 68, 012305 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  26. Lamata, L. et al. Ion crystal transducer for strong coupling between single ions and single photons. Phys. Rev. Lett. 107, 030501 (2011).

    Article  ADS  Google Scholar 

  27. Lindner, N. H. & Rudolph, T. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett. 103, 113602 (2009).

    Article  ADS  Google Scholar 

  28. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  29. Horodecki, M., Horodecki, P. & Horodecki, R. General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank T. Monz and P. Schindler for assistance in tomography analysis and P.O. Schmidt for early contributions to the experiment design. This work was supported by the Austrian Science Fund (FWF; project no. F4003), by the European Commission via the Atomic QUantum TEchnologies (AQUTE) Integrating Project, by a Marie Curie International Incoming Fellowship within the 7th European Framework Program, and by the Institut für Quanteninformation GmbH.

Author information

Authors and Affiliations

Authors

Contributions

A.S., B.C., K.F. and T.E.N. carried out the experiments, and B.B. performed numerical simulations. R.B., A.S., B.C., B.B., K.F. and T.E.N. contributed to the experimental set-up, and all authors participated in data analysis and preparation of the manuscript.

Corresponding author

Correspondence to T. E. Northup.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 578 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stute, A., Casabone, B., Brandstätter, B. et al. Quantum-state transfer from an ion to a photon. Nature Photon 7, 219–222 (2013). https://doi.org/10.1038/nphoton.2012.358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.358

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing