Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Colloidal quantum dot solar cells

Solar cells based on solution-processed semiconductor nanoparticles — colloidal quantum dots — have seen rapid advances in recent years. By offering full-spectrum solar harvesting, these cells are poised to address the urgent need for low-cost, high-efficiency photovoltaics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Solution-processed quantum dot solar cells.
Figure 2: Optoelectronic device architecture as a driver of colloidal quantum dot solar cell performance.



  2. Henry, C. H. J. Appl. Phys. 51, 4494–4500 (1980).

    Article  ADS  Google Scholar 

  3. King, R. R. Nature Photon. 2, 284–286 (2008).

    Article  ADS  Google Scholar 

  4. Murray, C. B., Nirmal, M., Norris, D. J. & Bawendi, M. G. Z. Phys. D 26, 231–233 (1993).

    Article  ADS  Google Scholar 

  5. Yoffe, A. D. Adv. Phys. 51, 799–890 (2002).

    Article  ADS  Google Scholar 

  6. McDonald, S. A. et al. Nature Mater. 4, 138–142 (2005).

    Article  ADS  Google Scholar 

  7. Klem, E. J. D., MacNeil, D. D., Cyr, P. W., Levina, L. & Sargent, E. H. Appl. Phys. Lett. 90, 183113 (2007).

    Article  ADS  Google Scholar 

  8. Clifford, J. P., Johnston, K. W., Levina, L. & Sargent, E. H. Appl. Phys. Lett. 91, 253117 (2007).

    Article  ADS  Google Scholar 

  9. Johnston, K. W. et al. Appl. Phys. Lett. 92, 151115 (2008).

    Article  ADS  Google Scholar 

  10. Johnston, K. W. et al. Appl. Phys. Lett. 92, 122111 (2008).

    Article  ADS  Google Scholar 

  11. Koleilat, G. I. et al. ACS Nano 2, 833–840 (2008).

    Article  Google Scholar 

  12. Luther, J. M. et al. Nano Lett. 8, 3488–3492 (2008).

    Article  ADS  Google Scholar 

  13. Ma, W., Luther, J. M., Zheng, H., Wu, Y. & Alivisatos, A. P. Nano Lett. 9, 1699–1703 (2009).

    Article  ADS  Google Scholar 

  14. Debnath, R. et al. J. Am. Chem. Soc. 132, 5952–5953 (2010).

    Article  Google Scholar 

  15. Ma, W. et al. ACS Nano 5, 8140–8147 (2011).

    Article  Google Scholar 

  16. Pattantyus-Abraham, A. G. et al. ACS Nano 4, 3374–3380 (2010).

    Article  Google Scholar 

  17. Liu, H. et al. Adv. Mater. 23, 3832–3837 (2011).

    Google Scholar 

  18. Wang, X. et al. ACS Appl. Mater. Interfaces 3, 3792–3795 (2011).

    Article  Google Scholar 

  19. Debnath, R. et al. Appl. Phys. Lett. 97, 023109 (2010).

    Article  ADS  Google Scholar 

  20. Tang, J. et al. Nature Mater. 10, 765–771 (2011).

    Article  ADS  Google Scholar 

  21. Wang, X. et al. Nature Photon. 5, 480–484 (2011).

    Article  ADS  Google Scholar 

  22. Kramer, I. J., Levina, L., Debnath, R., Zhitomirsky, D. & Sargent, E. H. Nano Lett. 11, 3701–3706 (2011).

    Article  ADS  Google Scholar 

  23. Kramer, I. J. & Sargent, E. H. ACS Nano 5, 8506–8514 (2011).

    Article  Google Scholar 

  24. Talapin, D. V. & Murray, C. B. Science 310, 86–89 (2005).

    Article  ADS  Google Scholar 

  25. Lee, J. S., Kovalenko, M. V., Huang, J., Chung, D. S. & Talapin, D. V. Nature Nanotechnol. 6, 348–352 (2011).

    Article  ADS  Google Scholar 

  26. Barkhouse, D. A. R. et al. Adv. Mater. 23, 3134–3138 (2011).

    Article  Google Scholar 

  27. Dionne, J. A., Sweatlock, L. A., Sheldon, M. T., Alivisatos, A. P. & Atwater, H. A. IEEE J. Sel. Top. Quant. Electron. 16, 295–306 (2010).

    Article  ADS  Google Scholar 

  28. Green, M. & Pillai, S. Nature Photon. 16, 130–132 (2012).

    Article  ADS  Google Scholar 

Download references


E.H.S. acknowledges J. Flexman, I. Kramer and S. Masala for their contributions to the manuscript and figures. This publication is based in part on work supported by award KUS-11-009-21 from the King Abdullah University of Science and Technology, the Ontario Research Fund Research Excellence Program, the Natural Sciences and Engineering Research Council of Canada, and Angstrom Engineering and Innovative Technology.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sargent, E. Colloidal quantum dot solar cells. Nature Photon 6, 133–135 (2012).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing