Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination

Abstract

Measurement of the state of a quantum system with inherent quantum uncertainty (noise) approaching the ultimate physical limits is of both technological and fundamental interest. Quantum noise prevents any mutually nonorthogonal quantum states, such as coherent states, from being distinguished with perfect accuracy. Optimized quantum measurements for nonorthogonal coherent states allow, in principle, for state discrimination sensitivities surpassing the standard quantum limit. Realizing quantum receivers that can detect multiple coherent states with sensitivity levels approaching the ultimate quantum limits is fundamental to quantum-enhanced measurements, and can optimize the performance of quantum and classical communications as well as future implementations of quantum technologies. Here, we demonstrate the first quantum receiver that unconditionally discriminates four nonorthogonal coherent states with error probabilities below the standard quantum limit. This receiver achieves error rates four times lower than is possible with any ideal conventional receiver with perfect detection efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discrimination strategy.
Figure 2: Experimental implementation of the quantum receiver.
Figure 3: Phase measurement and preparation.
Figure 4: Experimental error probability.

Similar content being viewed by others

References

  1. Helstrom, C. W. Quantum Detection and Estimation Theory, Mathematics in Science and Engineering 123 (Academic Press, 1976).

    MATH  Google Scholar 

  2. Caves, C. M. & Drummond, P. D. Quantum limits on bosonic communication rates. Rev. Mod. Phys. 66, 481–537 (1994).

    Article  ADS  Google Scholar 

  3. Grosshans, F. & Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002).

    Article  ADS  Google Scholar 

  4. Grosshans, F. et al. Quantum key distribution using Gaussian-modulated coherent states. Nature 421, 238–241 (2003).

    Article  ADS  Google Scholar 

  5. Betti, S., De Marchis, G. & Iannone, E. Coherent Optical Communications Systems (Wiley, 2000).

    Google Scholar 

  6. Weedbrook, C. et al. Gaussian quantum information. Rev. Mod. Phys. 84, 621–669 (2012).

    Article  ADS  Google Scholar 

  7. Munro, W. J., Nemoto, K. & Spiller, T. P. Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005).

    Article  ADS  Google Scholar 

  8. Van Loock, P. Optical hybrid approaches to quantum information. Laser Photon. Rev. 5, 167–200 (2011).

    Article  ADS  Google Scholar 

  9. Nemoto, K. & Munro, W. J. Nearly deterministic linear optical controlled-not gate. Phys. Rev. Lett. 93, 250502 (2004).

    Article  ADS  Google Scholar 

  10. Ralph, T. C., Gilchrist, A., Milburn, G. J., Munro, W. J. & Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A 68, 042319 (2003).

    Article  ADS  Google Scholar 

  11. Wiseman, H. M. Adaptive phase measurements of optical modes: going beyond the marginal Q distribution. Phys. Rev. Lett. 75, 4587–4590 (1995).

    Article  ADS  Google Scholar 

  12. Armen, M. A., Au, J. K., Stockton, J. K., Doherty, A. C. & Mabuchi, H. Adaptive homodyne measurement of optical phase. Phys. Rev. Lett. 89, 133602 (2002).

    Article  ADS  Google Scholar 

  13. Wiseman, H. & Milburn, G. Quantum Measurement and Control (Cambridge Univ. Press, 2010).

    MATH  Google Scholar 

  14. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  15. Bennett, C. H. Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  16. Huttner, B., Imoto, N., Gisin, N. & Mor, T. Quantum cryptography with coherent states. Phys. Rev. A 51, 1863–1869 (1995).

    Article  ADS  Google Scholar 

  17. Giovannetti, V. et al. Classical capacity of the lossy bosonic channel: the exact solution. Phys. Rev. Lett. 92, 027902 (2004).

    Article  ADS  Google Scholar 

  18. Agarwal, G. S. Fiber-Optic Communication Systems (Wiley, 2010).

    Book  Google Scholar 

  19. Weedbrook, C. et al. Quantum cryptography without switching. Phys. Rev. Lett. 93, 170504 (2004).

    Article  ADS  Google Scholar 

  20. Sych, D. & Leuchs, G. Coherent state quantum key distribution with multi letter phase-shift keying. New J. Phys. 12, 053019 (2010).

    Article  ADS  Google Scholar 

  21. Leverrier, A. & Grangier, P. Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation. Phys. Rev. Lett. 102, 180504 (2009).

    Article  ADS  Google Scholar 

  22. Proakis, J. G. Digital Communications 4th edn (McGraw-Hill, 2000).

    MATH  Google Scholar 

  23. Kennedy, R. S. A near-optimum receiver for the binary coherent state quantum channel. MIT Res. Lab. Electron. Quart. Progr. Rep. 110, 219–225 (1972).

    Google Scholar 

  24. Dolinar, S. J. A optimum receiver for the binary coherent state quantum channel. MIT Res. Lab. Electron. Quart. Progr. Rep. 111, 115–120 (1973).

    Google Scholar 

  25. Dolinar, S. J. Jr. A Class of Optical Receivers Using Optical Feedback. PhD thesis, Massachusetts Institute of Technology (1976).

  26. Sasaki, M. & Hirota, O. Optimum decision scheme with a unitary control process for binary quantum-state signals. Phys. Rev. A 54, 2728–2736 (1996).

    Article  ADS  Google Scholar 

  27. Takeoka, M. & Sasaki, M. Discrimination of the binary coherent signal: Gaussian-operation limit and simple non-Gaussian near-optimal receivers. Phys. Rev. A 78, 022320 (2008).

    Article  ADS  Google Scholar 

  28. Wittmann, C. et al. Demonstration of near-optimal discrimination of optical coherent states. Phys. Rev. Lett. 101, 210501 (2008).

    Article  ADS  Google Scholar 

  29. Cook, R. L., Martin, P. J. & Geremia, J. M. Optical coherent state discrimination using a closed-loop quantum measurement. Nature 446, 774–777 (2007).

    Article  ADS  Google Scholar 

  30. Tsujino, K. et al. Sub-shot-noise-limit discrimination of on-off keyed coherent signals via a quantum receiver with a superconducting transition edge sensor. Opt. Express 18, 8107–8114 (2010).

    Article  ADS  Google Scholar 

  31. Tsujino, K. et al. Quantum receiver beyond the standard quantum limit of coherent optical communication. Phys. Rev. Lett. 106, 250503 (2011).

    Article  ADS  Google Scholar 

  32. Dolinar, S. J. Jr. A Near-Optimum Receiver Structure for the Detection of M-ary Optical PPM Signals, Telecommunication and Data Acquisition Progress Report 42–72, October–December 1982 (Jet Propulsion Laboratory, 1983).

    Google Scholar 

  33. Bondurant, R. S. Near-quantum optimum receivers for the phase-quadrature coherent-state channel. Opt. Lett. 18, 1896–1898 (1993).

    Article  ADS  Google Scholar 

  34. Becerra, F. E. et al. m-ary-state phase-shift-keying discrimination below the homodyne limit. Phys. Rev. A 84, 062324 (2011).

    Article  ADS  Google Scholar 

  35. Muller, C. et al. QPSK coherent state discrimination via a hybrid receiver. New J. Phys. 14, 083009 (2012).

    Article  ADS  Google Scholar 

  36. Izumi, S. et al. Displacement receiver for phase-shift-keyed coherent states. Phys. Rev. A 86, 042328 (2012).

    Article  ADS  Google Scholar 

  37. Nair, R., Yen, B. J., Guha, S., Shapiro, J. H. & Pirandola, S. Symmetric m-ary phase discrimination using quantum-optical probe states. Phys. Rev. A 86, 022306 (2012).

    Article  ADS  Google Scholar 

  38. Chen, J., Habif, J. L., Dutton, Z., Lazarus, R. & Guha, S. Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receiver. Nature Photon. 6, 374–379 (2012).

    Article  ADS  Google Scholar 

  39. Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007).

    Article  ADS  Google Scholar 

  40. Xiang, G. Y., Higgins, B. L., Berry, D. W., Wiseman, H. M. & Pryde, G. J. Entanglement-enhanced measurement of a completely unknown optical phase. Nature Photon. 5, 43–47 (2011).

    Article  ADS  Google Scholar 

  41. Zhang, L. et al. Mapping coherence in measurement via full quantum tomography of a hybrid optical detector. Nature Photon. 6, 364–368 (2012).

    Article  ADS  Google Scholar 

  42. PicoQuant, model Tau-SPAD-100. http://www.picoquant.com/products/tau_spad/tau_spad.htm

  43. Gentile, T. R., Houston, J. M. & Cromer, C. L. Realization of a scale of absolute spectral response using the National Institute of Standards and Technology high-accuracy cryogenic radiometer. Appl. Opt. 35, 4392–4403 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

F.E.B. thanks S. Polyakov and A. Restelli for fruitful discussions about FPGA programming and low-noise electronic design, respectively, and I. Spielman for providing the laser diode at 780 nm.

Author information

Authors and Affiliations

Authors

Contributions

F.E.B. designed the experimental implementation of the receiver, performed the measurements and analysed the experimental results. J.F. and A.M. provided assistance. J.G., J.K. and G.B. conceived the initial theoretical measurement strategy. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to F. E. Becerra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becerra, F., Fan, J., Baumgartner, G. et al. Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination. Nature Photon 7, 147–152 (2013). https://doi.org/10.1038/nphoton.2012.316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.316

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing