Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bell's measure in classical optical coherence

Abstract

The statistical description of optical fields in classical coherence theory is the foundation for many applications in metrology, microscopy, lithography and astronomy. Partial coherence is commonly attributed to underlying fluctuations originating at the source or arising upon passage through a random medium. A less acknowledged source of uncertainty (partial coherence) stems from the act of ignoring a degree of freedom of a beam when observing another degree of freedom coupled to (or classically entangled with) it. We demonstrate here that Bell's measure, which is commonly used in tests of quantum non-locality, may be used as a quantitative tool in classical optical coherence to delineate native incoherence associated with statistical fluctuations from correlation- (or, entanglement-) based incoherence. Our results demonstrate the applicability of the concepts recently developed in quantum information science to classical optical coherence theory and optical signal processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: Experiment A: coherent beam with coupled polarization and parity.
Figure 3: Experiment B: partially coherent beam with coupled parity and polarization.
Figure 4: Experiment C: beam with random parity-polarization coupling.
Figure 5: Parameterizing partially coherent beams by Spol, Spar and S.

Similar content being viewed by others

References

  1. Kipnis, N. History of the Principle of Interference of Light (Birkhäuser Verlag, 1991).

    Book  Google Scholar 

  2. Born, M. & Wolf, E. Principles of Optics (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  3. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  4. Wolf, E. Introduction to the Theory of Coherence and Polarization of Light (Cambridge Univ. Press, 2007).

    MATH  Google Scholar 

  5. Goodman, J. W. Speckle Phenomena in Optics (Roberts & Company, 2007).

    Google Scholar 

  6. Wolf, E. Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 312, 263–267 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  7. Horne, M. A., Shimony, A. & Zeilinger A. Two-particle interferometry. Phys. Rev. Lett. 62, 2209–2212 (1989).

    Article  ADS  Google Scholar 

  8. Jaeger, G., Horne, M. A. & Shimony, A. Complementarity of one-particle and two-particle interference. Phys. Rev. A 48, 1023–1027 (1993).

    Article  ADS  Google Scholar 

  9. Abouraddy, A. F., Nasr, M. B., Saleh, B. E. A., Sergienko, A. V. & Teich, M. C. Demonstration of the complementarity of one- and two-photon interference. Phys. Rev. A 63, 063803 (2001).

    Article  ADS  Google Scholar 

  10. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  11. Bouwmeester, D., Ekert, A. K. & Zeilinger, A. (eds) The Physics of Quantum Information (Springer, 2000).

    Book  Google Scholar 

  12. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    Article  ADS  Google Scholar 

  13. Schrödinger, E. Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555–563 (1935).

    Article  ADS  Google Scholar 

  14. Bohm, D. Quantum Theory (Prentice-Hall, 1951).

    Google Scholar 

  15. Bell, J. S. On the Einstein–Podolsky–Rosen paradox. Physics (Long Island City) 1, 195–200 (1964).

    MathSciNet  Google Scholar 

  16. Aiello, A. & Woerdman, J. P. Intrinsic entanglement degradation by multimode detection. Phys. Rev. A 70, 023808 (2004).

    Article  ADS  Google Scholar 

  17. Aiello, A. & Woerdman, J. P. Physical bounds to the entropy-depolarization relation in random light scattering. Phys. Rev. Lett. 94, 090406 (2005).

    Article  ADS  Google Scholar 

  18. Aiello, A., Puentes, G. & Woerdman, J. P. Linear optics and quantum maps. Phys. Rev. A 76, 032323 (2007).

    Article  ADS  Google Scholar 

  19. Yarnall, T., Abouraddy, A. F., Saleh, B. E. A. & Teich, M. C. Spatial coherence effects in second- and fourth-order temporal interference. Opt. Express 16, 7634–7640 (2008).

    Article  ADS  Google Scholar 

  20. Simon, B. N. et al. Nonquantum entanglement resolves a basic issue in polarization optics. Phys. Rev. Lett. 104, 023901 (2010).

    Article  ADS  Google Scholar 

  21. Qian, X-F. & Eberly, J. H. Entanglement and classical polarization states. Opt. Lett. 36, 4110–4112 (2011).

    Article  ADS  Google Scholar 

  22. Borges, C. V. S., Hor-Meyll, M., Huguenin, J. A. O. & Khoury, A. Z. Bell-like inequality for the spin–orbit separability of a laser beam. Phys. Rev. A 82, 033833 (2010).

    Article  ADS  Google Scholar 

  23. Holleczek, A., Aiello, A., Gabriel, C., Marquardt, C. & Leuchs, G. Classical and quantum properties of cylindrically polarized states of light. Opt. Express 19, 9714–9736 (2011).

    Article  ADS  Google Scholar 

  24. Wootters, W. K. Quantum entanglement as a quantifiable resource. Phil. Trans. R. Soc. Lond. A 356, 1717–1731 (1998).

    Article  ADS  Google Scholar 

  25. Abouraddy, A. F., Yarnall, T., Saleh, B. E. A. & Teich, M. C. Violation of Bell's inequality with continuous spatial variables. Phys. Rev. A 75, 052114 (2007).

    Article  ADS  Google Scholar 

  26. Yarnall, T., Abouraddy, A. F., Saleh, B. E. A. & Teich, M. C. Experimental violation of Bell's inequality in spatial-parity space. Phys. Rev. Lett. 99, 170408 (2007).

    Article  ADS  Google Scholar 

  27. Yarnall, T., Abouraddy, A. F., Saleh, B. E. A. & Teich, M. C. Synthesis and analysis of entangled photonic qubits in spatial-parity space. Phys. Rev. Lett. 99, 250502 (2007).

    Article  ADS  Google Scholar 

  28. Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics 2nd edn (Wiley-Interscience, 2007).

    Google Scholar 

  29. Gori, F., Santarsiero, M. & Borghi, R. Vector mode analysis of a Young interferometer. Opt. Lett. 31, 858–860 (2006).

    Article  ADS  Google Scholar 

  30. Hill, S. & Wootters, W. K. Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997).

    Article  ADS  Google Scholar 

  31. Abouraddy, A. F., Saleh, B. E. A., Sergienko, A. V. & Teich, M. C. Degree of entanglement for two qubits. Phys. Rev. A 64, 050101(R) (2001).

    Article  ADS  MathSciNet  Google Scholar 

  32. Brosseau, C. & Dogariu, A. in Progress in Optics (ed. Wolf, E.) Vol. 49, Ch. 4 (Elsevier, 2006).

    Google Scholar 

  33. Abouraddy, A. F., Di Giuseppe, G., Yarnall, T. M., Teich, M. C. & Saleh, B. E. A. Implementing one-photon three-qubit quantum gates using spatial light modulators. Phys. Rev. A 86, 050303 (2012).

    Article  ADS  Google Scholar 

  34. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  35. Aspect, A., Grangier, P. & Roger, G. Experimental tests of realistic local theories via Bell's theorem. Phys. Rev. Lett. 47, 460–463 (1981).

    Article  ADS  Google Scholar 

  36. Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: a new violation of Bell's inequalities. Phys. Rev. Lett. 49, 91–94 (1982).

    Article  ADS  Google Scholar 

  37. Cirel'son, B. S. Quantum generalizations of Bell's inequality. Lett. Math. Phys. 4, 93–106 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  38. Collins, D., Gisin, N., Linden, N., Massar, S. & Popescu, S. Bell inequalities for arbitrarily high dimensional systems. Phys. Rev. Lett. 88, 040404 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  39. Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J. & Andersson, E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nature Phys. 7, 677–680 (2011).

    Article  ADS  Google Scholar 

  40. Gabor, D. in Progress in Optics (ed. Wolf, E.) Vol. 1, Ch. 4 (Elsevier, 1961).

    Google Scholar 

  41. Miller, D. A. B. Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths. Appl. Opt. 39, 1681–1699 (2000).

    Article  ADS  Google Scholar 

  42. Ekert, A. & Knight, P. L. Entangled quantum systems and the Schmidt decomposition. Am. J. Phys. 63, 415–423 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  43. Życzkowski, K., Penson, K. A., Nechita, I. & Collins, C. Generating random density matrices. J. Math. Phys. 52, 062201 (2011).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank A. Dogariu and J.W. Goodman for useful discussions, and A. Dogariu and W.V. Schoenfeld for the loan of equipment.

Author information

Authors and Affiliations

Authors

Contributions

A.F.A. and B.E.A.S. conceived the idea and directed the project. K.H.K. and G.D.G. carried out the experiments and the theoretical calculations. All authors contributed to analysing the results and writing the manuscript.

Corresponding authors

Correspondence to Ayman F. Abouraddy or Bahaa E. A. Saleh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 461 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kagalwala, K., Di Giuseppe, G., Abouraddy, A. et al. Bell's measure in classical optical coherence. Nature Photon 7, 72–78 (2013). https://doi.org/10.1038/nphoton.2012.312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing