Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures

Abstract

Magnetic effects at optical frequencies are notoriously weak, so magneto-optical devices must be large to create a sufficient effect. In graphene, it has been shown that inhomogeneous strains can induce ‘pseudomagnetic fields’ that behave in a similar manner to real ones. Here, we show experimentally and theoretically that it is possible to induce such a field at optical frequencies in a photonic lattice. To our knowledge, this is the first realization of a pseudomagnetic field in optics. The field yields ‘photonic Landau levels’ separated by bandgaps in the spatial spectrum of the structured dielectric lattice. The gaps between these highly degenerate levels lead to transverse optical confinement. The use of strain allows for the exploration of magnetic-like effects in a non-resonant way that would be otherwise inaccessible in optics. It also suggests the possibility that aperiodic photonic-crystal structures can achieve greater field enhancement and slow-light effects than periodic structures via high density of states at the Landau levels. Generalizing these concepts to systems beyond optics, such as matter waves in optical potentials, offers new intriguing physics that is fundamentally different from that in purely periodic structures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Description of honeycomb photonic lattice and band structure.
Figure 2: Effect of strain on the eigenvalue spectrum of the honeycomb photonic lattice.
Figure 3: Experimental and simulation results for increasing strain.
Figure 4: Effect of a defect waveguide on beam confinement.

References

  1. 1

    Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

  2. 2

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

  3. 3

    Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys. 7, 907–912 (2011).

  4. 4

    Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).

  5. 5

    Cai, W. & Shalaev, V. Optical Metamaterials: Fundamentals and Applications (Springer, 2009).

  6. 6

    Plum, E. et al. Metamaterials: optical activity without chirality. Phys. Rev. Lett. 102, 113902 (2009).

  7. 7

    Kane, C. L. & Mele, E. J. Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932–1935 (1997).

  8. 8

    Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Phys. 6, 30–33 (2010).

  9. 9

    Peleg, O. et al. Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007).

  10. 10

    Bahat-Treidel, O., Peleg, O. & Segev, M. Symmetry breaking in honeycomb photonic lattices. Opt. Lett. 33, 2251–2253 (2008).

  11. 11

    Bahat-Treidel, O. & Segev, M. Nonlinear wave dynamics in honeycomb lattices. Phys. Rev. A 84, 021802(R) (2011).

  12. 12

    Szameit, A., Rechtsman, M. C., Bahat-Treidel, O. & Segev, M. PT-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806(R) (2011).

  13. 13

    Ablowitz, M. J., Nixon, S. D. & Zhu, Y. Conical diffraction in honeycomb lattices. Phys. Rev. A 79, 053830 (2009).

  14. 14

    Soljačić, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

  15. 15

    Molina, M. I. & Kivshar, Y. S. Discrete and surface solitons in photonic graphene nanoribbons. Opt. Lett. 35, 2895–2897 (2010).

  16. 16

    Birks, T. A., Knight, J. C. & Russell, P. S. J. Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997).

  17. 17

    Christodoulides, D. N. & Joseph, R. I. Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988).

  18. 18

    Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

  19. 19

    Eisenberg, H. S., Silberberg, Y., Morandotti, R., Boyd, A. R. & Aitchison, J. S. Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998).

  20. 20

    Lederer, F. et al. Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008).

  21. 21

    Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52–55 (2007).

  22. 22

    Makris, K. G., Suntsov, S., Christodoulides, D. N., Stegeman, G. I. & Hache, A. Discrete surface solitons. Opt. Lett. 30, 2466–2468 (2005).

  23. 23

    Malkova, N., Hromada, I., Wang, X., Bryant, G. & Chen, Z. Observation of optical Shockley-like surface states in photonic superlattices. Opt. Lett. 34, 1633–1635 (2009).

  24. 24

    Longhi, S. Quantum-optical analogies using photonic structures. Laser Photon. Rev. 3, 243–261 (2009).

  25. 25

    Szameit, A. & Nolte, S. Discrete optics in femtosecond-laser-written photonic structures. J. Phys. B 43, 163001 (2010).

  26. 26

    Bahat-Treidel, O. et al. Klein tunneling in deformed honeycomb lattices. Phys. Rev. Lett. 104, 063901 (2010).

  27. 27

    Sepkhanov, R. A., Bazaliy, Y. B. & Beenakker, C. W. J. Extremal transmission at the Dirac point of a photonic band structure. Phys. Rev. A 75, 063813 (2007).

  28. 28

    Bravo-Abad, J., Joannopoulos, J. D. & Soljačić, M. Enabling single-mode behavior over large areas with photonic Dirac cones. Proc. Natl Acad. Sci. USA 109, 9761–9765 (2012).

  29. 29

    Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nature Photon. 3, 91–94 (2009).

  30. 30

    Stone, M. Quantum Hall Effect (World Scientific, 1992).

  31. 31

    Kohmoto, M. & Hasegawa, Y. Zero modes and edge states of the honeycomb lattice. Phys. Rev. B 76, 205402 (2007).

  32. 32

    Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature 430, 654–657 (2004).

  33. 33

    Johnson, S. G., Fan, S., Villeneuve, P. R., Joannopoulos, J. D. & Kolodziejski, L. A. Guided modes in photonic crystal slabs. Phys. Rev. B 60, 5751–5758 (1999).

  34. 34

    Purcell, E. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

  35. 35

    Akhmerov, A. R. & Beenakker, C. W. J. Boundary conditions for Dirac fermions on a terminated honeycomb lattice. Phys. Rev. B 77, 085423 (2008).

  36. 36

    Ruter, C. E. et al. Observation of parity-time symmetry in optics. Nature Phys. 6, 192–195 (2010).

  37. 37

    Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

  38. 38

    Kottos, T. Optical physics: broken symmetry makes light work. Nature Phys. 6, 166–167 (2010).

  39. 39

    Makris, K. G., El-Ganainy, R., Christodoulides, D. N. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008).

  40. 40

    Klaiman, S., Günther, U. & Moiseyev, N. Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008).

Download references

Acknowledgements

M.C.R. acknowledges the Azrieli Foundation for the award of an Azrieli fellowship. A.S. acknowledges support from the German Ministry of Education and Research (Center for Innovation Competence programme, grant 03Z1HN31). M.S. acknowledges support from the Israel Science Foundation, the USA–Israel Binational Science Foundation, and the Advanced Grant by the European Research Council.

Author information

M.C.R. and J.M.Z. contributed equally. All authors contributed significantly.

Correspondence to Mikael C. Rechtsman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1138 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rechtsman, M., Zeuner, J., Tünnermann, A. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nature Photon 7, 153–158 (2013) doi:10.1038/nphoton.2012.302

Download citation

Further reading