Abstract
Fifty years after the invention of the laser diode, and forty years after the butterfly effect signified the unpredictability of deterministic chaos, it is commonly believed that a laser diode behaves like a damped nonlinear oscillator and cannot be driven into chaotic operation without additional forcing or parameter modulation. Here, we counter that belief and report the first example of a free-running laser diode generating chaos. The underlying physics comprises a nonlinear coupling between two elliptically polarized modes in a vertical-cavity surface-emitting laser. We identify chaos in experimental time series and show, theoretically, the bifurcations leading to single- and double-scroll attractors with characteristics similar to Lorenz chaos. The reported polarization chaos resembles noise-driven mode hopping, but shows opposite statistical properties. Our findings open up new research areas for the creation of controllable and integrated sources of optical chaos.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Harnessing microcomb-based parallel chaos for random number generation and optical decision making
Nature Communications Open Access 31 July 2023
-
Chaotic microlasers caused by internal mode interaction for random number generation
Light: Science & Applications Open Access 20 June 2022
-
Mid-infrared hyperchaos of interband cascade lasers
Light: Science & Applications Open Access 02 January 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Poincaré, H. Science and Method (Dovers, 1952).
Andronov, A. A. Les cycles limites de Poincaré et la théorie des oscillations auto-entretenues. C.R. Acad. Sci. 189, 559–561 (1929).
Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).
Li, T.-Y. & Yorke, J. A. Period three implies chaos. Am. Math. Monthly 82, 985–992 (1975).
Strogatz, S. H. Nonlinear dynamics: ordering chaos with disorder. Nature 378, 444 (1995).
Coffey, D. S. Self-organization, complexity and chaos: the new biology for medicine. Nature Med. 4, 882–885 (1998).
Garfinkel, A., Spano, M. L., Ditto, W. L. & Weiss, J. N. Controlling cardiac chaos. Science 257, 1230–1235 (1992).
Steingrube, S., Timme, M., Wörgötter, F. & Manoonpong, P. Self-organized adaptation of a simple neural circuit enables complex robot behaviour. Nature Phys. 6, 224–230 (2010).
Haken, H. Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 53, 77–78 (1975).
Tredicce, J. R., Arecchi, F. T., Lippi, G. L. & Puccioni, G. P. Instabilities in lasers with an injected signal. J. Opt. Soc. Am. B 2, 173–183 (1985).
Weiss, C. O., Abraham, N. B. & Hübner, U. Homoclinic and heteroclinic chaos in a single-mode laser. Phys. Rev. Lett. 61, 1587–1590 (1988).
Yamada, T. & Graham, R. Chaos in a laser system under a modulated external field. Phys. Rev. Lett. 45, 1322–1324 (1980).
Arecchi, F. T., Meucci, R., Puccioni, G. & Tredicce, J. Experimental evidence of subharmonic bifurcations, multistability and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 49, 1217–1220 (1982).
Kubodera, K. & Otsuka, K. Spike-mode oscillations in lasers-diode pumped LiNdP4O12 lasers. IEEE J. Quantum Electron. 17, 1139–1144 (1981).
Otsuka, K. & Kawaguchi, H. Period-doubling bifurcations in detuned lasers with injected signals. Phys. Rev. A 29, 2953–2956 (1984).
Bracikowski, C. & Roy, R. Chaos in a multimode solid-state laser system. Chaos 1, 49–64 (1991).
Mukai, T. & Otsuka, K. New route to optical chaos: successive-subharmonic-oscillation cascade in a semiconductor laser coupled to an external cavity. Phys. Rev. Lett. 55, 1711–1714 (1985).
Kawaguchi, H. Optical bistability and chaos in a semiconductor laser with a saturable absorber. Appl. Phys. Lett. 45, 1264–1266 (1984).
Simpson, T. B., Liu, J. M., Gavrielides, A., Kovanis, V. & Alsing, P. M. Period-doubling route to chaos in a semiconductor laser subject to optical injection. Appl. Phys. Lett. 64, 3539–3541 (1994).
San Miguel, M., Feng, Q. & Moloney, J. V. Light-polarization dynamics in surface-emitting semiconductor lasers. Phys. Rev. A 52, 1728–1739 (1995).
VanWiggeren, G. D. & Roy, R. Communication with chaotic lasers. Science 279, 1198–1200 (1998).
Argyris, A. et al. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438, 343–346 (2005).
Larger, L. & Dudley, J. M. Nonlinear dynamics: optoelectronics chaos. Nature 465, 41–42 (2010).
Uchida, A. et al. Fast physical random bit generation with chaotic semiconductor lasers. Nature Photon. 2, 728–732 (2008).
Kanter, I., Aviad, Y., Reidler, I., Cohen, E. & Rosenbluh, M. An optical ultrafast random bit generator. Nature Photon. 4, 58–61 (2010).
Rontani, D., Locquet, A., Sciamanna, M. & Citrin, D. S. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback. Opt. Lett. 32, 2960–2962 (2007).
Albert, F. et al. Observing chaos for quantum-dot microlasers with external feedback. Nature Commun. 2, 366 (2011).
Oliver, N., Soriano, M. C., Sukow, D. W. & Fischer, I. Dynamics of a semiconductor laser with polarization-rotated feedback and its utilization for random bit generation. Opt. Lett. 36, 4632–4634 (2011).
Sciamanna, M., Gatare, I., Locquet, A. & Panajotov, K. Polarization synchronization in unidirectionally coupled vertical-cavity surface-emitting lasers with orthogonal optical injection. Phys. Rev. E 75, 056213 (2007).
Yu, S. F., Shum, P. & Ngo, N. Q. Performance of optical chaotic communication systems using multimode vertical-cavity surface-emitting lasers. Opt. Commun. 200, 143–152 (2001).
Hopfer, F. et al. Single-mode submonolayer quantum-dot vertical-cavity surface-emitting lasers with high modulation bandwidth. Appl. Phys. Lett. 89, 141106 (2006).
Olejniczak, L. et al. Polarization switching and polarization mode hopping in quantum dot vertical-cavity surface-emitting lasers. Opt. Express 19, 2476–2484 (2011).
Willemsen, M. B., Khalid, M. U. F., Van Exter, M. P. & Woerdman, J. P. Polarization switching of a vertical-cavity surface-emitting lasers as a Kramers hopping problem. Phys. Rev. Lett. 82, 4815–4818 (1999).
Wolf, A., Swift, J. B., Swinney, H. L. & Vastano, J. A. Determining Lyapunov exponents from a time-series. Physica D 16, 285–317 (1984).
Martin-Regalado, J., Prati, F., San Miguel, M. & Abraham, N. B. Polarization properties of vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 33, 765–783 (1997).
Meier, F. & Zakharchenya, B. P. Optical Orientation (North-Holland, 1984).
Sondermann, M., Ackemann, T., Balle, S., Mulet, J. & Panajotov, K. Experimental and theoretical investigations on elliptically polarized dynamical transition states in the polarization switching of vertical-cavity surface-emitting lasers. Opt. Commun. 235, 421–434 (2004).
Abarbanel, H. D. I., Brown, R. & Kennel, M. B. Local Lyapunov exponents computed from observed data. J. Nonlin. Sci. 2, 343–365 (1992).
Rabiner, L. R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257–286 (1989).
Kanter, I., Frydman, A. & Ater, A. Utilizing hidden Markov processes as a tool for experimental physics. Europhys. Lett. 69, 798–804 (2005).
Grassberger, P. & Procaccia, I. Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A 28, 2591–2593 (1983).
Fraedrich, K. & Risheng, W. Estimating the correlation dimension of an attractor from noisy and small datasets based on re-embedding. Physica D 65, 373–398 (1993).
Nagler, B. et al. Polarization mode-hopping in single-mode vertical-cavity surface-emitting lasers: theory and experiment. Phys. Rev. A 68, 013813 (2003).
Provenzale, A., Smith, L. A., Vio, R. & Murante, G. Distinguishing between low-dimensional dynamics and randomness in measured time-series. Physica D 58, 31–49 (1992).
Hovel, S. et al. Optical spin manipulation of electrically pumped vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 92, 041118 (2008).
Adachi, T., Ohno, Y., Terauchi, R., Matsukura, F. & Ohno, H. Mobility dependence of electron spin relaxation time in n-type InGaAs/InAlAs multiple quantum wells. Physica E 7, 1015–1019 (2000).
Gerhardt, N. C. et al. Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers. Appl. Phys. Lett. 99, 151107 (2011).
VanWiggeren, G. D. & Roy, R. Communication with dynamically fluctuating states of light polarization. Phys. Rev. Lett. 88, 097903 (2002).
Renaudier, J. et al. Linear fiber impairments mitigation of 40-Gbit/s polarization multiplexed QPSK by digital processing in a coherent receiver. J. Lightw. Technol. 26, 36–42 (2008).
Scirè, A., Colet, P. & San Miguel, M. Phase synchronization and polarization ordering of globally coupled oscillators. Phys. Rev. E 70, 035201 (2004).
Acknowledgements
The authors acknowledge support from the Conseil Régional de Lorraine, Fondation Supélec, FWO-Vlaanderen, the METHUSALEM programme of the Flemish government, and the Interuniversity Attraction Poles programme of the Belgian Science Policy Office (grant no. IAP P7-35 ‘photonics@be’).
Author information
Authors and Affiliations
Contributions
M.S. and K.P. initiated the study. M.V. and M.S. performed the simulation of the laser dynamics. M.V., K.P. and M.S. carried out chaos identification from experimental and theoretical time traces. All authors discussed the results and contributed to writing the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 539 kb)
Rights and permissions
About this article
Cite this article
Virte, M., Panajotov, K., Thienpont, H. et al. Deterministic polarization chaos from a laser diode. Nature Photon 7, 60–65 (2013). https://doi.org/10.1038/nphoton.2012.286
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2012.286
This article is cited by
-
Harnessing microcomb-based parallel chaos for random number generation and optical decision making
Nature Communications (2023)
-
Chaotic microlasers caused by internal mode interaction for random number generation
Light: Science & Applications (2022)
-
Mid-infrared hyperchaos of interband cascade lasers
Light: Science & Applications (2022)
-
Simulating chaotic dynamics with variable polarisation of VCSEL twin lasers using FBG as a dynamic sensor
Pramana (2022)
-
Ultrafast spin-lasers
Nature (2019)