Abstract
An optoelectronic material with a spatially varying bandgap that is tunable is highly desirable for use in photovoltaics, photocatalysis and photodetection. Elastic strain has the potential to be used to achieve rapid and reversible tuning of the bandgap. However, as a result of plasticity or fracture, conventional materials cannot sustain a high enough elastic strain to create sufficient changes in their physical properties. Recently, an emergent class of materials—named ‘ultrastrength materials’—have been shown to avoid inelastic relaxation up to a significant fraction of their ideal strength. Here, we illustrate theoretically and computationally that elastic strain is a viable agent for creating a continuously varying bandgap profile in an initially homogeneous, atomically thin membrane. We propose that a photovoltaic device made from a strain-engineered MoS2 monolayer will capture a broad range of the solar spectrum and concentrate excitons or charge carriers.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
All-optical control of high-purity trions in nanoscale waveguide
Nature Communications Open Access 12 April 2023
-
Electronic and optical properties of the buckled and puckered phases of phosphorene and arsenene
Scientific Reports Open Access 05 December 2022
-
Abnormal nonlinear optical responses on the surface of topological materials
npj Computational Materials Open Access 16 May 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).
Henry, B. R. & Greenlay, W. R. A. Detailed features in the local mode overtone bands of ethane, neopentane, tetramethylbutane, and hexamethylbenzene. J. Chem. Phys. 72, 5516–5524 (1980).
De Vos, A. Detailed balance limit of the efficiency of tandem solar-cells. J. Phys. D 13, 839–846 (1980).
Kang, Z., Tsang, C. H. A., Wong, N-B., Zhang, Z. & Lee, S-T. Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J. Am. Chem. Soc. 129, 12090–12091 (2007).
McDonald, S. A. et al. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Mater. 4, 138–142 (2005).
Zhu, T. & Li, J. Ultra-strength materials. Prog. Mater. Sci. 55, 710–757 (2010).
Zhu, T., Li, J., Ogata, S. & Yip, S. Mechanics of ultra-strength materials. MRS Bull. 34, 167–172 (2009).
Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Liu, F., Ming, P. M. & Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76, 064120 (2007).
Feng, J. et al. Patterning of graphene. Nanoscale 4, 4883–4899 (2012).
Bertolazzi, S., Brivio, J. & Kis, A. Stretching and breaking of ultrathin MoS2 . ACS Nano 5, 9703–9709 (2011).
Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).
Cao, T. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nature Commun. 3, 887 (2012).
Xiao, D., Liu, G-B., Feng, W., Xu, X. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).
Li, J. The mechanics and physics of defect nucleation. MRS Bull. 32, 151–159 (2007).
Li, J., van Vliet, K. J., Zhu, T., Yip, S. & Suresh, S. Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002).
Hoffmann, R., Howell, J. M. & Rossi, A. R. Bicapped tetrahedral, trigonal prismatic, and octahedral alternatives in main and transition group six-coordination. J. Am. Chem. Soc. 98, 2484–2492 (1976).
Landau, L. D., Lifshits, E. M., Kosevich, A. M. & Pitaevskii, L. P. Theory of Elasticity 3rd English edn 12 (Pergamon Press, 1986).
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. B 136, B864–B871 (1964).
Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).
Scalise, E., Houssa, M., Pourtois, G., Afanas'ev, V. V. & Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 . Nano Res. 5, 43–48 (2012).
Yun, W. S., Han, S. W., Hong, S. C., Kim, I. G. & Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H–MX2 semiconductors (M=Mo, W; X=S, Se, Te). Phys. Rev. B 85, 033305 (2012).
Hedin, L. New method for calculating one-particle Green's function with application to electron-gas problem. Phys. Rev. 139, A796–A823 (1965).
Hybertsen, M. S. & Louie, S. G. First-principles theory of quasiparticles: calculation of band-gaps in semiconductors and insulators. Phys. Rev. Lett. 55, 1418–1421 (1985).
Salpeter, E. E. & Bethe, H. A. A relativistic equation for bound-state problems. Phys. Rev. 84, 1232–1242 (1951).
Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).
Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).
Nisoli, C., Lammert, P. E., Mockensturm, E. & Crespi, V. H. Carbon nanostructures as an electromechanical bicontinuum. Phys. Rev. Lett. 99, 045501 (2007).
Tersoff, J. New empirical-approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988).
Jin, C. R. Large deflection of circular membrane under concentrated force. Appl. Math. Mech. Engl. 29, 889–896 (2008).
Nye, J. F. Physical Properties of Crystals: Their Representation by Tensors and Matrices 20–30 (Clarendon Press, 1985).
Shimizu, M. Long-range pair transport in graded band gap and its applications. J. Lumin. 119, 51–54 (2006).
Honold, A., Schultheis, L., Kuhl, J. & Tu, C. W. Collision broadening of two-dimensional excitons in GaAs single quantum well. Phys. Rev. B 40, 6442–6445 (1989).
Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J. & Schuller, C. Low-temperature photocarrier dynamics in monolayer MoS2 . Appl. Phys. Lett. 99, 102109 (2011).
Kim, J. Y. et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Adv. Mater. 18, 572–576 (2006).
Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nature Photon. 6, 153–161 (2012).
Franzl, T., Klar, T. A., Schietinger, S., Rogach, A. L. & Feldmann, J. Exciton recycling in graded gap nanocrystal structures. Nano Lett. 4, 1599–1603 (2004).
Han, J. H. et al. Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition. Nature Mater. 9, 833–839 (2010).
Watanabe, K., Taniguchi, T. & Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature Mater. 3, 404–409 (2004).
Lagally, M. G. Silicon nanomembranes. MRS Bull. 32, 57–63 (2007).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Langreth, D. C. & Mehl, M. J. Beyond the local-density approximation in calculations of ground-state electronic-properties. Phys. Rev. B 28, 1809–1834 (1983).
Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys. Rev. A 38, 3098–3100 (1988).
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
Blöchl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994).
Acknowledgements
The authors appreciate helpful discussions with S.G. Johnson and M. Loncar, and acknowledge support from the NSF (DMR-1120901) and AFOSR (FA9550-08-1-0325), as well as NSFC Project 11174009 and 973 Programs of China (2010CB631003, 2011CBA00109, 2012CB619402, 2013CB921900).
Author information
Authors and Affiliations
Contributions
J.L. designed the project. J.F., X.F.Q. and C.W.H. carried out the calculations and the modelling. J.F., X.F.Q. and J.L. wrote the paper. All authors contributed to discussions of the results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 1925 kb)
Rights and permissions
About this article
Cite this article
Feng, J., Qian, X., Huang, CW. et al. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nature Photon 6, 866–872 (2012). https://doi.org/10.1038/nphoton.2012.285
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2012.285
This article is cited by
-
All-optical control of high-purity trions in nanoscale waveguide
Nature Communications (2023)
-
Band Alignment in Black Phosphorus/Transition Metal Dichalcogenide Heterolayers: Impact of Charge Redistribution, Electric Field, Strain, and Layer Engineering
Journal of Electronic Materials (2023)
-
Effect of Strain on Atomic-Scale Friction in Two-Dimensional Graphene/ZrS2 van der Waals Heterostructure
Tribology Letters (2023)
-
Uniaxial strain engineered MoS2 (molybdenite) and chlorine adsorbed MoS2 nanostructures for tuning their electronic and optical properties
Optical and Quantum Electronics (2023)
-
Quantum photonics with layered 2D materials
Nature Reviews Physics (2022)