Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing

Abstract

The ability of a few-photon light field to impart an appreciable phase shift on another light field is critical for many quantum information applications1,2. A recently proposed paradigm3 for quantum computation utilizes weak nonlinearities, where a strong field mediates such cross-phase shifts between single photons. Such a protocol promises to be feasible in terms of scalability to many qubits if a cross-phase shift of 10–5 to 10–2 radians per photon can be achieved. A promising platform to achieve such cross-phase shifts is the hollow-core photonic bandgap fibre4, which can highly confine atomic vapours and light over distances much greater than the diffraction length5,6. Here, we produce large cross-phase shifts of 0.3 mrad per photon with a fast response time (<5 ns) using rubidium atoms confined to a hollow-core photonic bandgap fibre, which represents, to our knowledge, the largest such nonlinear phase shift induced in a single pass through a room-temperature medium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: XPM using a three-level scheme in rubidium vapour confined to a hollow-core PBGF.
Figure 2: Non-demolition measurement of signal power.
Figure 3: Measurement of system response time.
Figure 4: Large XPM at the few-photon level.

Similar content being viewed by others

References

  1. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    Article  ADS  Google Scholar 

  2. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  3. Munro, W. J., Nemoto, K. & Spiller, T. P. Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005).

    Article  ADS  Google Scholar 

  4. Cregan, R. F. et al. Single-mode photonic band gap guidance of light in air. Science 285, 1537–1539 (1999).

    Article  Google Scholar 

  5. Ghosh, S. et al. Low-light-level optical interactions with rubidium vapor in a photonic band-gap fiber. Phys. Rev. Lett. 97, 023603 (2006).

    Article  ADS  Google Scholar 

  6. Light, P. S., Benabid, F., Couny, F., Maric, M. & Luiten, A. N. Electromagnetically induced transparency in Rb-filled coated hollow-core photonic crystal fiber. Opt. Lett. 32, 1323–1325 (2007).

    Article  ADS  Google Scholar 

  7. Imoto, N., Haus, H. A. & Yamamoto, Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985).

    Article  ADS  Google Scholar 

  8. Milburn, G. J. Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989).

    Article  ADS  Google Scholar 

  9. Chuang, I. L. & Yamamoto, Y. Simple quantum computer. Phys. Rev. A 52, 3489–3496 (1995).

    Article  ADS  Google Scholar 

  10. Schmidt, H. & Imamoglu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

    Article  ADS  Google Scholar 

  11. Lukin, M. D. & Imamoglu, A. Nonlinear optics and quantum entanglement of ultraslow single photons. Phys. Rev. Lett. 84, 1419–1422 (2000).

    Article  ADS  Google Scholar 

  12. Shapiro, J. H. Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006).

    Article  ADS  Google Scholar 

  13. Gea-Banacloche, J. Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010).

    Article  ADS  Google Scholar 

  14. Spiller, T. P. et al. Quantum computation by communication. New J. Phys. 8, 30 (2006).

    Article  ADS  Google Scholar 

  15. Nemoto, K. & Munro, W. J. Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004).

    Article  ADS  Google Scholar 

  16. Barrett, S. D. et al. Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302(R) (2005).

    Article  ADS  Google Scholar 

  17. Matsuda, N., Shimizu, R., Mitsumori, Y., Kosaka, H. & Edamatsu, K. Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nature Photon. 3, 95–98 (2009).

    Article  ADS  Google Scholar 

  18. Kang, H. & Zhu, Y. Observation of large Kerr nonlinearity at low light intensities. Phys. Rev. Lett. 91, 093601 (2003).

    Article  ADS  Google Scholar 

  19. Chang, H., Du, Y., Yao, J., Xie, C. & Wang, H. Observation of cross-phase shift in hot atoms with quantum coherence. Europhys. Lett. 65, 485–490 (2004).

    Article  ADS  Google Scholar 

  20. Lo, H-Y., Su, P-C. & Chen, Y-F. Low-light-level cross-phase modulation by quantum interference. Phys. Rev. A 81, 053829 (2010).

    Article  ADS  Google Scholar 

  21. Shiau, B-W., Wu, M-C., Lin, C-C. & Chen, Y-C. Low-light-level cross-phase modulation with double slow light pulses. Phys. Rev. Lett. 106, 193006 (2011).

    Article  ADS  Google Scholar 

  22. Bajcsy, M. et al. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009).

    Article  ADS  Google Scholar 

  23. Venkataraman, V., Saha, K., Londero, P. & Gaeta, A. L. Few-photon all-optical modulation in a photonic band-gap fiber. Phys. Rev. Lett. 107, 193902 (2011).

    Article  ADS  Google Scholar 

  24. Grangier, P., Roch, J. F. & Roger, G. Observation of backaction-evading measurement of an optical intensity in a three-level atomic nonlinear system. Phys. Rev. Lett. 66, 1418–1421 (1991).

    Article  ADS  Google Scholar 

  25. Poizat, J. Ph. & Grangier, P. Experimental realization of a quantum optical tap. Phys. Rev. Lett. 70, 271–274 (1993).

    Article  ADS  Google Scholar 

  26. Benabid, F., Couny, F., Knight, J. C., Birks, T. A. & Russell, P. St. J. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature 434, 488–491 (2005).

    Article  ADS  Google Scholar 

  27. Boyd, R. W. Nonlinear Optics 3rd edn (Academic Press, 2008).

    Google Scholar 

  28. Olson, A. J., Carlson, E. J. & Mayer, S. K. Two-photon spectroscopy of rubidium using a grating-feedback diode laser. Am. J. Phys. 74, 218–223 (2006).

    Article  ADS  Google Scholar 

  29. Saha, K., Venkataraman, V., Londero, P. & Gaeta, A. L. Enhanced two-photon absorption in a hollow-core photonic-band-gap fiber. Phys. Rev. A 83, 033833 (2011).

    Article  ADS  Google Scholar 

  30. Bhagwat, A. R., Slepkov, A. D., Venkataraman, V., Londero, P. & Gaeta, A. L. On-demand all-optical generation of controlled Rb-vapor densities in photonic-band-gap fibers. Phys. Rev. A 79, 063809 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF, grant no. PHY-0969996). The authors thank P. Londero for useful discussions during the conception of the experiment, and A. R. Bhagwat and A. D. Slepkov for sharing their expertise regarding design of the experimental chamber.

Author information

Authors and Affiliations

Authors

Contributions

V.V. conceived and designed the experiment in consultation with A.L.G., and V.V. and K.S. performed the experiment. V.V. analysed the data and carried out the theoretical modelling. V.V. wrote the paper in discussion with all authors. A.L.G. is the principal investigator on the project.

Corresponding author

Correspondence to Alexander L. Gaeta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 659 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkataraman, V., Saha, K. & Gaeta, A. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nature Photon 7, 138–141 (2013). https://doi.org/10.1038/nphoton.2012.283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing