Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics

This article has been updated

Abstract

Recent advancements in metamaterials and plasmonics have promised a number of exciting applications, in particular at terahertz and optical frequencies. Unfortunately, the noble metals used in these photonic structures are not particularly good conductors at high frequencies, resulting in significant dissipative loss. Here, we address the question of what is a good conductor for metamaterials and plasmonics. For resonant metamaterials, we develop a figure-of-merit for conductors that allows for a straightforward classification of conducting materials according to the resulting dissipative loss in the metamaterial. Application of our method predicts that graphene and high-Tc superconductors are not viable alternatives for metals in metamaterials. We also provide an overview of a number of transition metals, alkali metals and transparent conducting oxides. For plasmonic systems, we predict that graphene and high-Tc superconductors cannot outperform gold as a platform for surface plasmon polaritons, because graphene has a smaller propagation length-to-wavelength ratio.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Dissipated power in a metamaterial with F = 0.37 and τ = 0.039 (quantities calculated for the slab-wire pair of Fig. 2a).
Figure 2: Comparison between the loss factors and kinetic inductance factors of charge-neutral graphene and gold.
Figure 3: Comparison of the plasmonic properties of graphene and gold.
Figure 4: Comparison of the superconductor YBCO at 10 and 50 K (below the critical temperature of 80 K) with silver at room temperature.
Figure 5: Overview of conducting materials classified according to their plasma frequency and collision frequency.

Change history

  • 30 March 2012

    In the version of this Article originally published, ref. 32 was incorrect. This error has been corrected for the HTML and PDF versions of the Article.

References

  1. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  Google Scholar 

  2. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2006).

    Article  ADS  Google Scholar 

  3. Soukoulis, C. M. & Wegener, M. Optical metamaterials—more bulky and less lossy. Science 330, 1633–1634 (2010).

    Article  ADS  Google Scholar 

  4. Yen, T. J. et al. Terahertz magnetic response from artificial materials. Science 303, 1494–1496 (2004).

    Article  ADS  Google Scholar 

  5. Linden, S. et al. Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004).

    Article  ADS  Google Scholar 

  6. Enkrich, C. et al. Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett. 95, 203901 (2005).

    Article  ADS  Google Scholar 

  7. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  8. Zhang, S. et al. Experimental demonstration of near-infrared negative index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

    Article  ADS  Google Scholar 

  9. Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).

    Article  ADS  Google Scholar 

  10. Plum, E. et al. Metamaterial with negative index due to chirality. Phys. Rev. B 79, 035407 (2009).

    Article  ADS  Google Scholar 

  11. Economou, E. N. Surface plasmons in thin films. Phys. Rev. 182, 539–554 (1969).

    Article  ADS  Google Scholar 

  12. Boardman, A. D. Electromagnetic Surface Modes (Wiley, 1982).

    Google Scholar 

  13. Maier, S. A. & Atwater, H. A. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101 (2005).

    Article  ADS  Google Scholar 

  14. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    Article  ADS  Google Scholar 

  15. Catchpole, K. R. & Polman, A. Plasmonic solar cells. Opt. Express 16, 21793–21800 (2008).

    Article  ADS  Google Scholar 

  16. Soukoulis, C. M., Zhou, J., Koschny, T., Kafesaki, M. & Economou, E. N. The science of negative index materials. J. Phys. Condens. Matter 20, 304217 (2008).

    Article  Google Scholar 

  17. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E. & Ebbesen T. W. Channel plasmon-polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 95, 046802 (2005).

    Article  ADS  Google Scholar 

  18. Kolomenski, A., Kolomenskii, A., Noel, J., Peng, S. & Schuessler, H. Propagation length of surface plasmons in a metal film with roughness. Appl. Opt. 48, 5683–5691 (2009).

    Article  ADS  Google Scholar 

  19. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    Article  ADS  Google Scholar 

  20. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  ADS  Google Scholar 

  21. Koppens, F. H. L., Chang, D. E. & García de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  ADS  Google Scholar 

  22. Chen, H.-T. et al. Tuning the resonance in high-temperature superconducting terahertz metamaterials. Phys. Rev. Lett. 105, 247402 (2010).

    Article  ADS  Google Scholar 

  23. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

    Article  ADS  Google Scholar 

  24. Gorkunov, M., Lapine, M., Shamonina, E. & Ringhofer, K. H. Effective magnetic properties of a composite material with circular conductive elements. Eur. Phys. J. B 28, 263–269 (2002).

    Article  ADS  Google Scholar 

  25. Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).

    Article  ADS  Google Scholar 

  26. Koschny, T., Kafeski, M., Economou, E. N. & Soukoulis, C. M. Effective medium theory of left-handed materials. Phys. Rev. Lett. 93, 107402 (2004).

    Article  ADS  Google Scholar 

  27. Zhang, S., Genov, D. A., Wang, Y., Liu, M. & Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 101, 047401 (2008).

    Article  ADS  Google Scholar 

  28. Papasimakis, N., Fedotov, V. A., Zheludev, N. I. & Prosvirnin, S. L. Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 101, 253903 (2008).

    Article  ADS  Google Scholar 

  29. Tassin, P., Zhang, L., Koschny, Th., Economou, E. N. & Soukoulis, C. M. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett. 102, 053901 (2009).

    Article  ADS  Google Scholar 

  30. Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, 758–762 (2009).

    Article  ADS  Google Scholar 

  31. Penciu, R. S., Kafesaki, M., Koschny, Th., Economou, E. N. & Soukoulis, C. M. Magnetic response of nanoscale left-handed metamaterials. Phys. Rev. B 81, 235111 (2010).

    Article  ADS  Google Scholar 

  32. Luan, P. G. Power loss and electromagnetic energy density in a dispersive metamaterial medium. Phys. Rev. E 80, 046601 (2009).

    Article  ADS  Google Scholar 

  33. Zhou, J. et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Phys. Rev. Lett. 95, 223902 (2005).

    Article  ADS  Google Scholar 

  34. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  35. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  ADS  Google Scholar 

  36. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

    Article  ADS  Google Scholar 

  37. Horng, J. et al., Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83, 165113 (2011).

    Article  ADS  Google Scholar 

  38. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308–1308 (2008).

    Article  ADS  Google Scholar 

  39. Papasimakis, N. et al. Graphene in a photonic metamaterial. Opt. Express 18, 8353–8358 (2010).

    Article  ADS  Google Scholar 

  40. Hanson, G. W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008).

    Article  ADS  Google Scholar 

  41. Jablan, M., Buljan, H. & Soljacic, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Article  ADS  Google Scholar 

  42. Peres, N. M. R., Ribeiro, R. M. & Castro Neto, A. H. Excitonic effects in the optical conductivity of gated graphene. Phys. Rev. Lett. 105, 055501 (2010).

    Article  ADS  Google Scholar 

  43. Grushin, A. G., Valenzuela, B. & Vozmediano, M. A. H. Effect of Coulomb interactions on the optical properties of doped graphene. Phys. Rev. B 80, 155417 (2009).

    Article  ADS  Google Scholar 

  44. Anlage, S. M. The physics and applications of superconducting metamaterials. J. Opt. 13, 024001 (2011).

    Article  ADS  Google Scholar 

  45. Ordal, M. A., Bell, R. J., Alexander, R. W., Long, L. L. & Querry, M. R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985).

    Article  ADS  Google Scholar 

  46. Kumar, A. R. et al. Far-infrared transmittance and reflectance of YBa2Cu3O7–δ films on Si substrates. J. Heat Transfer 121, 844–851 (1999).

    Article  Google Scholar 

  47. Khurgin, J. B. & Sun, G., Scaling of losses with size and wavelength in nanoplasmonics and metamaterials. Appl. Phys. Lett. 99, 211106 (2011).

    Article  ADS  Google Scholar 

  48. Blaber, M. G., Arnold, M. D. & Ford, M. J. Designing materials for plasmonic systems: the alkali-noble intermetallics. J. Phys. Condens. Matter 22, 095501 (2010).

    Article  ADS  Google Scholar 

  49. Bobb, D. A. et al. Engineering of low-loss metal for nanoplasmonic and metamaterials applications. Appl. Phys. Lett. 95, 151102 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work at Ames Laboratory was partially supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering (Ames Laboratory is operated for the US Department of Energy by Iowa State University under contract no. DE-AC02-07CH11358) (theoretical studies) and by the US Office of Naval Research (award no. N00014-10-1-0925, study of graphene). Work at FORTH was supported by the European Community's FP7 projects NIMNIL (grant agreement no. 228637, graphene) and ENSEMBLE (grant agreement no. 213669, study of oxides). P.T. acknowledges a fellowship from the Belgian American Educational Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.T., T.K. and C.M.S. conceived the strategy of comparing conducting materials for metamaterials and plasmonics. P.T. assembled input data and P.T and T. K. performed the calculations. All authors were involved in interpretation of the results. P.T. wrote the paper and all authors commented on the manuscript at all stages.

Corresponding author

Correspondence to Philippe Tassin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 804 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tassin, P., Koschny, T., Kafesaki, M. et al. A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nature Photon 6, 259–264 (2012). https://doi.org/10.1038/nphoton.2012.27

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.27

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing