Abstract
The development of techniques for efficiently confining photons on the deep sub-wavelength spatial scale will revolutionize scientific research and engineering practices. The efficient coupling of light into extremely small nanofocusing devices has been a major challenge in on-chip nanophotonics because of the need to overcome various loss mechanisms and the on-chip nanofabrication challenges. Here, we demonstrate experimentally the achievement of highly efficient nanofocusing in an Au–SiO2–Au gap plasmon waveguide using a carefully engineered three-dimensional taper. The dimensions of the SiO2 layer, perpendicular to the direction of wave propagation, taper linearly below 100 nm. Our simulations suggest that the three-dimensional linear-tapering approach could focus 830 nm light into a 2 × 5 nm2 area with ≤3 dB loss and an intensity enhancement of 3.0 × 104. In a two-photon luminescence measurement, our device achieved an intensity enhancement of 400 within a 14 × 80 nm2 area, and a transmittance of 74%.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).
Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).
Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).
Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).
Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).
Neutens, P., Van Dorpe, P., De Vlaminck, I., Lagae, L. & Borghs, G. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nature Photon. 3, 283–286 (2009).
Nikolajsen, T., Leosson, K. & Bozhevolnyi, S. I. Surface plasmon polariton modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 5833–5835 (2004).
Cai, W., White, J. S. & Brongersma, M. L. Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano. Lett. 9, 4403–4411 (2009).
Anger, P., Bharadwaj, P. & Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006).
Taminiau, T. H., Stefani, F. D., Segerink, F. B. & Van Hulst, N. F. Optical antennas direct single-molecule emission. Nature Photon. 2, 234–237 (2008).
Okamoto, K. et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Mater. 3, 601–605 (2004).
Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).
Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dot. Nature 450, 402–406 (2007).
Maier, S. A. A. Plasmonics: Fundamentals and Applications (Springer, 2007).
Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).
Volkov, V. S. et al. Nanofocusing with channel plasmon polaritons. Nano Lett. 9, 1278–1282 (2009).
Vernon, K. C., Gramotnev, D. K. & Pile, D. F. P. Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate. J. Appl. Phys. 101, 104312 (2007).
Verhagen, E., Kuipers, L. & Polman, A. Plasmonic nanofocusing in a dielectric wedge. Nano Lett. 10, 3665–3669 (2010).
Schnell, M. et al. Nanofocusing of mid-infrared energy with tapered transmission lines. Nature Photon. 5, 283–287 (2011).
Davoyan, A. R., Shadrivov, I. V., Zharov, A. A., Gramotnev, D. K. & Kivshar, Y. S. Nonlinear nanofocusing in tapered plasmonic waveguides. Phys. Rev. Lett. 105, 116804 (2010).
Gramotnev, D. K., Pile, D. F. P., Vogel, M. W. & Zhang, X. Local electric field enhancement during nanofocusing of plasmons by a tapered gap. Phys. Rev. B 75, 035431 (2007).
Pile, D. F. P. & Gramotnev, D. K. Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides. Appl. Phys. Lett. 89, 04111 (2006).
Choi, H., Pile, D. F. P., Nam, S., Bartal, G. & Zhang, X. Compressing surface plasmons for nano-scale optical focusing. Opt. Express 17, 7519–7524 (2009).
Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).
Bouhelier, A., Beversluis, M., Hartschuh, A. & Novotny, L. Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003).
Ropers, C. et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 7, 2784–2788 (2007).
Verhagen, E., Kuipers, L. & Polman, A. Enhanced nonlinear optical effects with a tapered plasmonic waveguide. Nano Lett. 7, 334–337 (2007).
Lindquist, N. C., Nagpal, P., Lesuffleur, A., Norris, D. J. & Oh, S.-H. Three-dimensional plasmonic nanofocusing. Nano Lett. 10, 1369–1373 (2010).
Verhagen, E., Polman, A. & Kuipers, L. (Kobus). Nanofocusing in laterally tapered plasmonic waveguides. Opt. Express 16, 45–57 (2008).
Gramotnev, D. K., Vogel, M. W. & Stockman, M. I. Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods. J. Appl. Phys. 104, 034311 (2008).
Hecht, B. et al. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys. 112, 7761–7774 (2000).
Novotny, L. & Hafner, C. Light propagation in a cylindrical waveguide with a complex, metallic dielectric function. Phys. Rev. E 50, 4094–4106 (1994).
Issa, N. A. & Guckenberger, R. Optical nanofocusing on tapered metallic waveguides. Plasmonics 2, 31–37 (2007).
Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).
Vedantam, S. et al. A plasmonic dimple lens for nanoscale focusing of light. Nano Lett. 9, 3447–3452 (2009).
Conway, J. Efficient Optical Coupling to the Nanoscale PhD thesis, Univ. California, (2006).
Worthing, P. T. & Barnes, W. L. Efficient coupling of surface plasmon polaritons to radiation using a bi-grating. Appl. Phys. Lett. 79, 3035–3037 (2001).
Feng, N.-N. & Negro, L. D. Plasmon mode transformation in modulated-index metal–dielectric slot waveguides. Opt. Lett. 32, 3086–3088 (2007).
Reuter, G. E. H. & Sondheimer, E. H. The theory of the anomalous skin effect in metals. Proc. R. Soc. Lond. A 195, 336–364 (1948).
Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).
Beversluis, M. R., Bouhelier, A. & Novotny, L. Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys. Rev. B 68, 115433 (2003).
Acknowledgements
The authors thank X. Meng for gold evaporation and J. Dionne for her continuous encouragement. This work was supported by the Defense Advanced Research Project Agency (DARPA) Science & Technology (S&T) Surface-Enhanced Raman Scattering (SERS) programme, the Department of Energy (DOE), and the Engineering and Applied Sciences (EAS) division of California Institute of Technology.
Author information
Authors and Affiliations
Contributions
H.C. fabricated the 3D NPC devices, performed the experiments, and carried out TPPL measurements. S.C. and P.J.S. assisted with device fabrication and measurement collection. M.K. conducted the simulations and, with H.C., analysed the experimental data. M.S. and T.J.S. assisted with the simulations. J.B., M.W. and E.Y. provided in-depth discussion of the project. H.C. and M.K. wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 2971 kb)
Supplementary Movie 1
Supplementary Movie 1 (WMV 6464 kb)
Rights and permissions
About this article
Cite this article
Choo, H., Kim, MK., Staffaroni, M. et al. Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nature Photon 6, 838–844 (2012). https://doi.org/10.1038/nphoton.2012.277
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2012.277
This article is cited by
-
Ultra-deep Subwavelength Confinement Palladium-Based Elliptical Cylinder Plasmonic Waveguide in the Near-Infrared Range
Plasmonics (2023)
-
Plasmonic Slot Waveguide Propagation Analysis
Plasmonics (2023)
-
Plasmonic Eigenmodes in Metallic Nanocubes
Plasmonics (2023)
-
Polarization-insensitive plasmon nanofocusing with broadband interference modulation for optical nanoimaging
Nano Research (2023)
-
Recent advances in tip-enhanced Raman spectroscopy probe designs
Nano Research (2023)