Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Silk inverse opals

Abstract

Periodic nanostructures provide the facility to control and manipulate the flow of light through their lattices. Three-dimensional photonic crystals enable the controlled design of structural colour, which can be varied by infiltrating the structure with different (typically liquid) fillers. Here, we report three-dimensional photonic crystals composed entirely of a purified natural protein (silk fibroin). The biocompatibility of this protein, as well as its favourable material properties and ease of biological functionalization, present opportunities for otherwise unattainable device applications such as bioresorbable integration of structural colour within living tissue or lattice functionalization by means of organic and inorganic material doping. We present a silk inverse opal that demonstrates a pseudo-photonic bandgap in the visible spectrum and show its associated structural colour beneath biological tissue. We also leverage silk's facile dopability to manufacture a gold nanoparticle silk inverse opal and demonstrate patterned heating mediated by enhancement of nanoparticle absorption at the band-edge frequency of the photonic crystal.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Fabrication steps for free-standing silk opal.
Figure 2: Optical response of SIO film.
Figure 3: Interface of SIO and biological material.
Figure 4: Absorption enhancements by the photonic band-edge.

References

  1. Rather, B., Hoffman, A., Schoen, F. & Lemon, J. in Biomaterials Science: An Introduction to Materials in Medicine page 10 (Academic Press, 2004).

    Google Scholar 

  2. Scheibel, T. Spider silks: recombinant synthesis, assembly, spinning, and engineering of synthetic proteins. Microb. Cell Fact. 3, 14–23 (2004).

    Article  Google Scholar 

  3. Omenetto, F. G. & Kaplan, D. L. New opportunities for an ancient material. Science 329, 528–531 (2010).

    ADS  Article  Google Scholar 

  4. Leal-Egana, A. & Scheibel, T. Silk-based materials for biomedical applications. Biotechnol. Appl. Biochem. 55, 155–167 (2010).

    Article  Google Scholar 

  5. Omenetto, F. G. & Kaplan, D. L. A new route for silk. Nature Photon. 2, 641–643 (2008).

    ADS  Article  Google Scholar 

  6. Lawrence, B. D., Cronin-Golomb, M., Georgakoudi, I., Kaplan, D. L. & Omenetto, F. G. Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 9, 1214–1220 (2008).

    Article  Google Scholar 

  7. Parker, S. T. et al. Biocompatible silk printed optical waveguides. Adv. Mater. 21, 2411–2415 (2009).

    Article  Google Scholar 

  8. Perry, H., Gopinath, A., Kaplan, D. L., Negro, L. D. & Omenetto F. G. Nano- and micropatterning of optically transparent, mechanically robust, biocompatible silk fibroin films. Adv. Mater. 20, 3070–3072 (2008).

    Article  Google Scholar 

  9. Demura, M., Asakura, T., Nakamura, E. & Tamura, H. Immobilization of peroxidase with a Bombyx mori silk fibroin membrane and its application to biophotosensors. J. Biotech. 10, 113–119 (1989).

    Article  Google Scholar 

  10. Domachuk, P., Perry, H., Amsden, J. J., Kaplan, D. L. & Omenetto, F. G. Bioactive ‘self-sensing’ optical systems. Appl. Phys. Lett. 95, 253702 (2009).

    ADS  Article  Google Scholar 

  11. Prasad, P. N. in Introduction to Biophotonics Ch. 15 (Wiley, 2003).

    Book  Google Scholar 

  12. Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

    Article  Google Scholar 

  13. Kim, S-H., Lee, S. Y., Yang, S-M. & Yi, G-R. Self-assembled colloidal structures for photonics. NPG Asia Mater. 3, 25–33 (2011).

    Article  Google Scholar 

  14. Asher, S. A., Peteu, S. F., Reese, C. E., Lin, M. X. & Finegold, D. Polymerized crystalline colloidal array chemical-sensing materials for detection of lead in body fluids. Anal. Bioanal. Chem. 373, 632–638 (2002).

    Article  Google Scholar 

  15. Bonifacio, L. D. et al. Towards the photonic nose: a novel platform for molecule and bacteria identification. Adv. Mater. 22, 1351–1354 (2010).

    Article  Google Scholar 

  16. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  Article  Google Scholar 

  17. Fujishima, M., Sakata, S., Iwasaki, T. & Uchida, K. Implantable photonic crystal for reflection-based optical sensing of biodegradation. J. Mater. Sci. 43, 1890–1896 (2008).

    ADS  Article  Google Scholar 

  18. Hunt, H. K. & Armani, A. M. Label-free biological and chemical sensing. Nanoscale 2, 1544–1559 (2010).

    ADS  Article  Google Scholar 

  19. Swinerd, V. M., Collins, A. M., Skaer, N. J. V., Gheysens, T. & Mann, S. Silk inverse opals from template-directed beta sheet transformation of regenerated silk fibroin. Soft Matter 3, 1377–1380 (2007).

    ADS  Article  Google Scholar 

  20. Xia, Y., Gates, B., Yin, Y. & Lu, Y. Monodispersed colloidal spheres: old materials with new applications. Adv. Mater. 12, 693–713 (2000).

    Article  Google Scholar 

  21. Wijnhoven, J. E. G. J. & Vos, W. L. Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998).

    ADS  Article  Google Scholar 

  22. Tarhan, I. I. & Watson, G. H. Photonic band structure of fcc colloidal crystals. Phys. Rev. Lett. 76, 315–318 (1996).

    ADS  Article  Google Scholar 

  23. Kim, S., Lee, J., Jeon, H. & Kim. H. J. Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications. Appl. Phys. Lett. 94, 133503 (2009).

    ADS  Article  Google Scholar 

  24. Tan, Y., Quan, W., Ding, S. & Wang, Y. Gold-nanoparticle-infiltrated polystyrene inverse opals: a three-dimensional platform for generating combined optical properties. Chem. Mater. 18, 3385–3389 (2006).

    Article  Google Scholar 

  25. Sanchez-Sobrado, O. et al. Interplay of resonant cavity modes with localized surface plasmons: optical absorption properties of Bragg stack integrating gold nanoparticles. Adv. Mater. 23, 2108–2112 (2011).

    Article  Google Scholar 

  26. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    Article  Google Scholar 

  27. Qin, Z. & Bischof, J. C. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 41, 1191–1217 (2012).

    Article  Google Scholar 

  28. Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41, 1578–1586 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This material was based on work supported in part by the US Army Research Laboratory and the US Army Research Office (contract no. W911 NF-07-1-0618) and by DARPA-DSO (H.T., S.M.S., M.A.B., D.L.K., J.J.A. and F.G.O.) and the AFOSR. SEM images were obtained at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation (award no. ECS-0335765). CNS is part of the Faculty of Arts and Sciences at Harvard University.

Author information

Authors and Affiliations

Authors

Contributions

S.K. and F.G.O. conceived and performed SIO fabrication, optical measurements, computational work and data analysis. A.N.M. and J.D.S. contributed to the fabrication of water-insoluble opal and optical measurements. H.T. contributed to the laser-heating experiment. D.L.K and F.G.O. supervised the project. S.K. and F.G.O. wrote the paper. All authors commented on the results and the manuscript.

Corresponding author

Correspondence to Fiorenzo G. Omenetto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1498 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, S., Mitropoulos, A., Spitzberg, J. et al. Silk inverse opals. Nature Photon 6, 818–823 (2012). https://doi.org/10.1038/nphoton.2012.264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.264

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing