Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Graphene plasmonics

Abstract

Two rich and vibrant fields of investigation—graphene physics and plasmonics—strongly overlap. Not only does graphene possess intrinsic plasmons that are tunable and adjustable, but a combination of graphene with noble-metal nanostructures promises a variety of exciting applications for conventional plasmonics. The versatility of graphene means that graphene-based plasmonics may enable the manufacture of novel optical devices working in different frequency ranges—from terahertz to the visible—with extremely high speed, low driving voltage, low power consumption and compact sizes. Here we review the field emerging at the intersection of graphene physics and plasmonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Building blocks of 'flatland' optics.
Figure 2: Multilayered flatland optics.
Figure 3: Intrinsic graphene plasmons.
Figure 4: Launching and imaging graphene plasmons.
Figure 5: Hybrid graphene plasmonic devices.
Figure 6: Hybrid graphene plasmonic devices.

Similar content being viewed by others

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    ADS  Google Scholar 

  3. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  4. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    ADS  Google Scholar 

  5. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    Article  ADS  Google Scholar 

  6. Koppens, F. H. L., Chang, D. E. & Javier Garcia de Abajo, F. Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011).

    Article  ADS  Google Scholar 

  7. Tassin, P., Koschny, T., Kafesaki, M. & Soukoulis, C. M. A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics. Nature Photon. 6, 259–264 (2012).

    Article  ADS  Google Scholar 

  8. Bao, Q. & Loh, K. P. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012).

    Article  Google Scholar 

  9. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  ADS  Google Scholar 

  10. Kuzmenko, A. B., van Heumen, E., Carbone, F. & van der Marel, D. Universal optical conductance of graphite. Phys. Rev. Lett. 100, 117401 (2008).

    Article  ADS  Google Scholar 

  11. Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).

    Article  ADS  Google Scholar 

  12. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

    Article  ADS  Google Scholar 

  13. Bao, Q. L. et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 19, 3077–3083 (2009).

    Article  Google Scholar 

  14. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  ADS  Google Scholar 

  15. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  ADS  Google Scholar 

  16. Kravets, V. G. et al. Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys. Rev. B 81, 155413 (2010).

    Article  ADS  Google Scholar 

  17. Yang, L., Deslippe, J., Park, C. H., Cohen, M. L. & Louie, S. G. Excitonic effects on the optical response of graphene and bilayer graphene. Phys. Rev. Lett. 103, 186802 (2009).

    Article  ADS  Google Scholar 

  18. Zhang, Y. B. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    Article  ADS  Google Scholar 

  19. Elias, D. C. et al. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).

    Article  ADS  Google Scholar 

  20. Nair, R. R. et al. Fluorographene: a two-dimensional counterpart of Teflon. Small 6, 2877–2884 (2010).

    Article  Google Scholar 

  21. Robinson, J. T. et al. Properties of fluorinated graphene films. Nano Lett. 10, 3001–3005 (2010).

    Article  ADS  Google Scholar 

  22. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  23. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  ADS  Google Scholar 

  24. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  25. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  26. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    ADS  Google Scholar 

  27. Gorbachev, R. V. et al. Hunting for monolayer boron nitride: optical and Raman signatures. Small 7, 465–468 (2011).

    Article  Google Scholar 

  28. Novoselov, K. S. Graphene: materials in the flatland. Rev. Mod. Phys. 83, 837–849 (2011).

    Article  ADS  Google Scholar 

  29. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  30. Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    Article  ADS  Google Scholar 

  31. Ponomarenko, L. A. et al. Tunable metal–insulator transition in double-layer graphene heterostructures. Nature Phys. 7, 958–961 (2011).

    Article  ADS  Google Scholar 

  32. Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).

    Article  ADS  Google Scholar 

  33. Engel, M. et al. Light–matter interaction in a microcavity-controlled graphene transistor. Nature Commun. 3, 906 (2012).

    Article  ADS  Google Scholar 

  34. Ferreira, A., Peres, N. M. R., Ribeiro, R. M. & Stauber, T. Graphene-based photodetector with two cavities. Phys. Rev. B 85, 115438 (2012).

    Article  ADS  Google Scholar 

  35. Giuliani, G. F. & Vignale, G. Quantum Theory of the Electron Liquid (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  36. Vicarelli, L. et al. Graphene field-effect transistors as room-temperature terahertz detectors. Nature Mater. 11, 865–871 (2012).

    Article  ADS  Google Scholar 

  37. Gangadharaiah, S., Farid, A. M. & Mishchenko, E. G. Charge response function and a novel plasmon mode in graphene. Phys. Rev. Lett. 100, 166802 (2008).

    Article  ADS  Google Scholar 

  38. Mikhailov, S. A. & Ziegler, K. New electromagnetic mode in graphene. Phys. Rev. Lett. 99, 016803 (2007).

    Article  ADS  Google Scholar 

  39. Ponomarenko, L. A. et al. Effect of a high-kappa environment on charge carrier mobility in graphene. Phys. Rev. Lett. 102, 206603 (2009).

    Article  ADS  Google Scholar 

  40. Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. N. J. Phys. 8, 318 (2006).

    Article  Google Scholar 

  41. Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    Article  ADS  Google Scholar 

  42. Polini, M. et al. Plasmons and the spectral function of graphene. Phys. Rev. B 77, 081411 (2008).

    Article  ADS  Google Scholar 

  43. Abedinpour, S. H. et al. Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets. Phys. Rev. B 84, 045429 (2011).

    Article  ADS  Google Scholar 

  44. Shung, K. W. K. Dielectric function and plasmon structure of stage-1 intercalated graphite. Phys. Rev. B 34, 979–993 (1986).

    Article  ADS  Google Scholar 

  45. Barlas, Y., Pereg-Barnea, T., Polini, M., Asgari, R. & MacDonald, A. H. Chirality and correlations in graphene. Phys. Rev. Lett. 98, 236601 (2007).

    Article  ADS  Google Scholar 

  46. Reed, J. P. et al. The Effective Fine-Structure Constant of Freestanding Graphene Measured in Graphite. Science 330, 805–808 (2010).

    Article  ADS  Google Scholar 

  47. Principi, A., Polini, M. & Vignale, G. Linear response of doped graphene sheets to vector potentials. Phys. Rev. B 80, 075418 (2009).

    Article  ADS  Google Scholar 

  48. Ramezanali, M. R., Vazifeh, M. M., Asgari, R., Polini, M. & MacDonald, A. H. Finite-temperature screening and the specific heat of doped graphene sheets. J. Phys. A 42, 214015 (2009).

    Article  ADS  MATH  Google Scholar 

  49. Jablan, M., Buljan, H. & Soljacic, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Article  ADS  Google Scholar 

  50. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    Article  ADS  Google Scholar 

  51. Belitz, D. & Das Sarma, S. Plasmon linewidth in metals and semiconductors: a memory-function approach. Phys. Rev. B 34, 8264–8269 (1986).

    Article  ADS  Google Scholar 

  52. Principi, A., Asgari, R. & Polini, M. Acoustic plasmons and composite hole-acoustic plasmon satellite bands in graphene on a metal gate. Solid State Commun. 151, 1627–1630 (2011).

    Article  ADS  Google Scholar 

  53. Eberlein, T. et al. Plasmon spectroscopy of free-standing graphene films. Phys. Rev. B 77, 233406 (2008).

    Article  ADS  Google Scholar 

  54. Liu, Y., Willis, R. F., Emtsev, K. V. & Seyller, T. Plasmon dispersion and damping in electrically isolated two-dimensional charge sheets. Phys. Rev. B 78, 201403 (2008).

    Article  ADS  Google Scholar 

  55. Koch, R. J., Seyller, T. & Schaefer, J. A. Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem. Phys. Rev. B 82, 201413 (2010).

    Article  ADS  Google Scholar 

  56. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article  ADS  Google Scholar 

  57. Fei, Z. et al. Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface. Nano Lett. 11, 4701–4705 (2011).

    Article  ADS  Google Scholar 

  58. Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

    Article  ADS  Google Scholar 

  59. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    Article  ADS  Google Scholar 

  60. Kim, J. T. & Choi, S-Y. Graphene-based plasmonic waveguides for photonic integrated circuits. Opt. Express 19, 24557–24562 (2011).

    Article  ADS  Google Scholar 

  61. Christensen, J., Manjavacas, A., Thongrattanasiri, S., Koppens, F. H. L. & García de Abajo, F. J. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6, 431–440 (2012).

    Article  Google Scholar 

  62. Yan, H. et al. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Lett. 12, 3766–3771 (2012).

    Article  ADS  Google Scholar 

  63. Zhou, W. et al. Atomically localized plasmon enhancement in monolayer graphene. Nature Nanotech. 7, 161–165 (2012).

    Article  ADS  Google Scholar 

  64. Crassee, I. et al. Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene. Nano Lett. 12, 2470–2474 (2012).

    Article  ADS  Google Scholar 

  65. Hwang, E. H. & Das Sarma, S. Quasiparticle spectral function in doped graphene: electron-electron interaction effects in ARPES. Phys. Rev. B 77, 081412 (2008).

    Article  ADS  Google Scholar 

  66. Bostwick, A. et al. Observation of plasmarons in quasi-freestanding doped graphene. Science 328, 999–1002 (2010).

    Article  ADS  Google Scholar 

  67. Walter, A. L. et al. Effective screening and the plasmaron bands in graphene. Phys. Rev. B 84, 085410 (2011).

    Article  ADS  Google Scholar 

  68. Lundqvist, B. I. Single-particle spectrum of the degenerate electron gas. Phys. Kondens. Mater. 6, 193–205 (1967).

    ADS  Google Scholar 

  69. Brar, V. W. et al. Observation of carrier-density-dependent many-body effects in graphene via tunneling spectroscopy. Phys. Rev. Lett. 104, 036805 (2010).

    Article  ADS  Google Scholar 

  70. LeBlanc, J. P. F., Hwang, J. & Carbotte, J. P. Distinguishing Coulomb and electron-phonon interactions for massless Dirac fermions. Phys. Rev. B 85, 115126 (2012).

    Article  ADS  Google Scholar 

  71. Peres, N. M. R. The transport properties of graphene: an introduction. Rev. Mod. Phys. 82, 2673–2700 (2010).

    Article  ADS  Google Scholar 

  72. Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Castro Neto, A. H. Electron-electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012).

    ADS  Google Scholar 

  73. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  74. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Google Scholar 

  75. Schedin, F. et al. Surface-enhanced Raman spectroscopy of graphene. ACS Nano 4, 5617–5626 (2010).

    Article  Google Scholar 

  76. Kravets, V. G. et al. Surface hydrogenation and optics of a graphene sheet transferred onto a plasmonic nanoarray. J. Phys. Chem. C 116, 3882–3887 (2012).

    Article  Google Scholar 

  77. Lee, J., Shim, S., Kim, B. & Shin, H. S. Surface-enhanced Raman scattering of single- and few-layer graphene by the deposition of gold nanoparticles. Chemistry 17, 2381–2387 (2011).

    Article  Google Scholar 

  78. Lee, J., Novoselov, K. S. & Shin, H. S. Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano 5, 608–612 (2011).

    Article  Google Scholar 

  79. Ling, X. et al. Can graphene be used as a substrate for Raman enhancement? Nano Lett. 10, 553–561 (2010).

    Article  ADS  Google Scholar 

  80. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

  81. Echtermeyer, T. J. et al. Strong plasmonic enhancement of photovoltage in graphene. Nature Commun. 2, 458 (2011).

    Article  ADS  Google Scholar 

  82. Liu, Y. et al. Plasmon resonance enhanced multicolour photodetection by graphene. Nature Commun. 2, 579 (2011).

    Article  ADS  Google Scholar 

  83. Mueller, T., Xia, F. N. A. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  Google Scholar 

  84. Park, J., Ahn, Y. H. & Ruiz-Vargas, C. Imaging of photocurrent generation and collection in single-layer graphene. Nano Lett. 9, 1742–1746 (2009).

    Article  ADS  Google Scholar 

  85. Xu, X. D., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    Article  ADS  Google Scholar 

  86. Gabor, N. M. et al. Hot carrier–assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  87. Giovannetti, G. et al. Doping graphene with metal contacts. Phys. Rev. Lett. 101, 026803 (2008).

    Article  ADS  Google Scholar 

  88. Blake, P. et al. Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun. 149, 1068–1071 (2009).

    Article  ADS  Google Scholar 

  89. Kravets, V. G., Schedin, F. & Grigorenko, A. N. Fine structure constant and quantized optical transparency of plasmonic nanoarrays. Nature Commun. 3, 640 (2012).

    Article  ADS  Google Scholar 

  90. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  ADS  Google Scholar 

  91. Papasimakis, N. et al. Graphene in a photonic metamaterial. Opt. Express 18, 8353–8359 (2010).

    Article  ADS  Google Scholar 

  92. Li, X. S. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  ADS  Google Scholar 

  93. Zou, Y., Tassin, P., Koschny, T. & Soukoulis, C. M. Interaction between graphene and metamaterials: split rings vs. wire pairs. Opt. Express 20, 12198–12204 (2012).

    Article  ADS  Google Scholar 

  94. Kravets, V. G. et al. Singular-phase nanooptics: towards label-free single molecule detection. Nature Mater. (submitted).

  95. Kravets, V. G., Schedin, F. & Grigorenko, A. N. Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101, 087403 (2008).

    Article  ADS  Google Scholar 

  96. Kravets, V. G., Schedin, F., Kabashin, A. V. & Grigorenko, A. N. Sensitivity of collective plasmon modes of gold nanoresonators to local environment. Opt. Lett. 35, 956–958 (2010).

    Article  ADS  Google Scholar 

  97. Kabashin, A. V., Patskovsky, S. & Grigorenko, A. N. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt. Express 17, 21191–21204 (2009).

    Article  ADS  Google Scholar 

  98. Elias, D. C. et al. Control of graphenes properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).

    Article  ADS  Google Scholar 

  99. Bozhevolnyi, S. I., Volkov, V. S., Devaux, E., Laluet, J-Y. & Ebbesen, T. W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. K. Geim, V. I. Fal'ko, M. I. Katsnelson, R. Asgari, R. Fazio, F. Guinea, A. H. MacDonald, V. Pellegrini, E. Rotenberg, F. Taddei, A. Tredicucci and G. Vignale for conversations. M.P. was supported by MIUR through the FIRB programme, grant no. RBFR10M5BT. A.N.G. was partly supported by an FP7 Metachem grant and the Samsung GRO programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Grigorenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grigorenko, A., Polini, M. & Novoselov, K. Graphene plasmonics. Nature Photon 6, 749–758 (2012). https://doi.org/10.1038/nphoton.2012.262

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing