Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nonlinear plasmonics

Abstract

When light interacts with metal nanostructures, it can couple to free-electron excitations near the metal surface. The electromagnetic resonances associated with these surface plasmons depend on the details of the nanostructure, opening up opportunities for controlling light confinement on the nanoscale. The resulting strong electromagnetic fields allow weak nonlinear processes, which depend superlinearly on the local field, to be significantly enhanced. In addition to providing enhanced nonlinear effects with ultrafast response times, plasmonic nanostructures allow nonlinear optical components to be scaled down in size. In this Review, we discuss the principles of nonlinear plasmonic effects and present an overview of their main applications, including frequency conversion, switching and modulation of optical signals, and soliton effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure B1: Photon diagrams for common nonlinear processes
Figure B2: Examples of plasmonic structures.
Figure 1: Examples of individual metal nanostructures for enhancing nonlinear effects.
Figure 2: Examples of structured metal surfaces for nonlinear plasmonics.
Figure 3: Plasmonic systems for enhancing nonlinear optical Kerr effect.
Figure 4: Controlling light with light in plasmonic nanostructures.

Similar content being viewed by others

References

  1. Boyd, R. W. Nonlinear Optics 3rd edn (Academic, 2008).

    Google Scholar 

  2. Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Phys. Rep. 408, 131–314 (2005).

    ADS  Google Scholar 

  3. Stockman, M. I. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011).

    ADS  Google Scholar 

  4. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    ADS  Google Scholar 

  5. Novotny, L. & van Hulst, N. Antennas for light. Nature Photon. 5, 83–90 (2011).

    ADS  Google Scholar 

  6. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

    ADS  Google Scholar 

  7. Sharma, B., Frontiera, R. R., Henry, A., Ringe, E. & van Duyne, R. P. SERS: materials, applications, and the future. Mater. Today 15, 16–25 (2012).

    Google Scholar 

  8. Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008).

    Google Scholar 

  9. Berini, P. & De Leon, I. Surface plasmon-polariton amplifiers and lasers. Nature Photon. 6, 16–24 (2012).

    ADS  Google Scholar 

  10. Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012).

    ADS  Google Scholar 

  11. Sipe, J. E., So, V. C. Y., Fukui, M. & Stegeman, G. I. Analysis of second-harmonic generation at metal surfaces. Phys. Rev. B 21, 4389–4402 (1980).

    ADS  Google Scholar 

  12. Wang, F. X. et al. Surface and bulk contributions to the second-order nonlinear optical response of a gold film. Phys. Rev. B 80, 233402 (2009).

    ADS  Google Scholar 

  13. Anisimov, S. I., Kapeliovich, B. L. & Perelman, T. L. Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov. Phys. JETP 39, 375–377 (1974).

    ADS  Google Scholar 

  14. Pines, D. & Nozieres, P. The Theory of Quantum Liquids Vol. I (Benjamin, 1966).

    MATH  Google Scholar 

  15. Ginzburg, P., Hayat, A., Berkovitch, N. & Orenstein, M. Nonlocal ponderomotive nonlinearity in plasmonics. Opt. Lett. 35, 1551–1553 (2010).

    ADS  Google Scholar 

  16. Chen, C. K., de Castro, A. R. B. & Shen, Y. R. Surface-enhanced second-harmonic generation. Phys. Rev. Lett. 46, 145–148 (1981).

    ADS  Google Scholar 

  17. Wokaun, A. et al. Surface second-harmonic generation from metal island films and microlithographic structures. Phys. Rev. B 24, 849–856 (1981).

    ADS  Google Scholar 

  18. Smolyaninov, I. I., Zayats, A. V. & Davis, C. C. Near-field second harmonic generation from a rough metal surface. Phys. Rev. B 56, 9290–9293 (1997).

    ADS  Google Scholar 

  19. Zayats, A. V., Kalkbrenner, T., Sandoghdar, V. & Mlynek, J. Second-harmonic generation from individual surface defects under local excitation. Phys. Rev. B 61, 4545–4548 (2000).

    ADS  Google Scholar 

  20. Bozhevolnyi, S. I., Beermann, J. & Coello, V. Direct observation of localized second-harmonic enhancement in random metal nanostructures. Phys. Rev. Lett. 90, 197403 (2003).

    ADS  Google Scholar 

  21. Anceau, C., Brasselet, S., Zyss, J. & Gadenne, P. Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy. Opt. Lett. 28, 713–715 (2003).

    ADS  Google Scholar 

  22. Stockman, M. I., Bergman, D. J., Anceau, C., Brasselet, S. & Zyss, J. Enhanced second-harmonic generation by metal surfaces with nanoscale roughness: nanoscale dephasing, depolarization, and correlations. Phys. Rev. Lett. 92, 057402 (2004).

    ADS  Google Scholar 

  23. Breit, M. et al. Experimental observation of percolation-enhanced nonlinear light scattering from semicontinuous metal films. Phys. Rev. B 64, 125106 (2001).

    ADS  Google Scholar 

  24. Kim, E. M. et al. Surface-enhanced optical third-harmonic generation in Ag island films. Phys. Rev. Lett. 95, 227402 (2005).

    ADS  Google Scholar 

  25. Simon, H. J., Mitchell, D. E. & Watson, J. G. Optical second-harmonic generation with surface plasmons in silver films. Phys. Rev. Lett. 33, 1531–1534 (1974).

    ADS  Google Scholar 

  26. Renger, J., Quidant, R., van Hulst, N. & Novotny, L. Surface-enhanced nonlinear four-wave mixing. Phys. Rev. Lett. 104, 046803 (2010).

    ADS  Google Scholar 

  27. Grosse, N. B., Heckmann, J. & Woggon, U. Nonlinear plasmon-photon interaction resolved by k-space spectroscopy. Phys. Rev. Lett. 108, 136802 (2012).

    ADS  Google Scholar 

  28. Dadap, J. I., Shan, J., Eisenthal, K. B. & Heinz, T. F. Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material. Phys. Rev. Lett. 83, 4045–4048 (1999).

    ADS  Google Scholar 

  29. Dadap, J. I., Shan, J. & Heinz, T. F. Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit. J. Opt. Soc. Am. B 21, 1328–1347 (2004).

    ADS  Google Scholar 

  30. Vance, F. W., Lemon, B. I. & Hupp, J. T. Enormous hyper-Rayleigh scattering from nanocrystalline gold particle suspensions. J. Phys. Chem. B 102, 10091–10093 (1998).

    Google Scholar 

  31. Hao, E. C., Schatz, G. C., Johnson, R. C. & Hupp, J. T. Hyper-Rayleigh scattering from silver nanoparticles. J. Chem. Phys. 117, 5963–5966 (2002).

    ADS  Google Scholar 

  32. Nappa, J., Russier-Antoine, I., Benichou, E., Jonin, C. & Brevet, P. F. Second harmonic generation from small gold metallic particles: from the dipolar to the quadrupolar response. J. Chem. Phys. 125, 184712 (2006).

    ADS  Google Scholar 

  33. Butet, J. et al. Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles. Phys. Rev. Lett. 105, 077401 (2010).

    ADS  Google Scholar 

  34. Butet, J. et al. Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett. 10, 1717–1721 (2010).

    ADS  Google Scholar 

  35. Butet, J. et al. Sensing with multipolar second harmonic generation from spherical metallic nanoparticles. Nano Lett. 12, 1697–1701 (2012).

    ADS  Google Scholar 

  36. Bouhelier, A., Beversluis, M., Hartschuh, A. & Novotny, L. Near-field second-harmonic generation induced by local field enhancement. Phys. Rev. Lett. 90, 013903 (2003).

    ADS  Google Scholar 

  37. Neacsu, C. C., Reider, G. A. & Raschke, M. B. Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures. Phys. Rev. B 71, 201402 (2005).

    ADS  Google Scholar 

  38. Nahata, A., Linke, R. A., Ishi, T. & Ohashi, K. Enhanced nonlinear optical conversion from a periodically nanostructured metal film. Opt. Lett. 28, 423–425 (2003).

    ADS  Google Scholar 

  39. Danckwerts, M. & Novotny, L. Optical frequency mixing at coupled gold nanoparticles. Phys. Rev. Lett. 98, 026104 (2007).

    ADS  Google Scholar 

  40. Marinica, D. C., Kazansky, A. K., Nordlander, P., Aizpurua, J. & Borisov, A. G. Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 12, 1333–1339 (2012).

    ADS  Google Scholar 

  41. Hanke, T. et al. Tailoring spatiotemporal light confinement in single plasmonic nanoantennas. Nano Lett. 12, 992–996 (2012).

    ADS  Google Scholar 

  42. Zhang, Y., Grady, N. K., Ayala-Orozco, C. & Halas, N. J. Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett. 11, 5519–5523 (2011).

    ADS  Google Scholar 

  43. Cai, W., Vasudev, A. P. & Brongersma, M. L. Electrically controlled nonlinear generation of light with plasmonics. Science 333, 1720–1723 (2011).

    ADS  Google Scholar 

  44. Pu, Y., Grange, R., Hsieh, C-L. & Psaltis, D. Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys. Rev. Lett. 104, 207402 (2010).

    ADS  Google Scholar 

  45. Park, I-Y. et al. Plasmonic generation of ultrashort extreme-ultraviolet light pulses. Nature Photon. 5, 677–681 (2011).

    ADS  Google Scholar 

  46. Reinisch, R. & Nevière, M. Electromagnetic theory of diffraction in nonlinear optics and surface-enhanced nonlinear optical effects. Phys. Rev. B 28, 1870–1885 (1983).

    ADS  MathSciNet  Google Scholar 

  47. Coutaz, J. L., Nevière, M., Pic, E. & Reinisch, R. Experimental study of surface-enhanced second-harmonic generation on silver gratings. Phys. Rev. B 32, 2227–2232 (1985).

    ADS  Google Scholar 

  48. Lamprecht, B., Leitner, A. & Aussenegg, F. R. Femtosecond decay-time measurement of electron-plasma oscillation in nanolithographically designed silver particles. Appl. Phys. B 64, 269–272 (1997).

    ADS  Google Scholar 

  49. Tuovinen, H. et al. Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles. J. Nonlin. Opt. Phys. Mater. 11, 421–432 (2002).

    ADS  Google Scholar 

  50. Canfield, B. K. et al. Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles. Opt. Express 12, 5418–5423 (2004).

    ADS  Google Scholar 

  51. Linden, S. et al. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys. Rev. Lett. 109, 015502 (2012).

    ADS  Google Scholar 

  52. Klein, M. W., Enkrich, C., Wegener, M. & Linden, S. Second-harmonic generation from magnetic meta-materials. Science 313, 502–504 (2006).

    ADS  Google Scholar 

  53. Feth, N. et al. Second-harmonic generation from complementary split-ring resonators. Opt. Lett. 33, 1975–1977 (2008).

    ADS  Google Scholar 

  54. McMahon, M. D., Lopez, R., Haglund, R. F. Jr, Ray, E. A. & Bunton, P. H. Second-harmonic generation from arrays of symmetric gold nanoparticles. Phys. Rev. B 73, 041401 (2006).

    ADS  Google Scholar 

  55. Xu, T., Jiao, X., Zhang, G. P. & Blair, S. Second-harmonic emission from sub-wavelength apertures: effects of aperture symmetry and lattice arrangement. Opt. Express 15, 13894–13906 (2006).

    ADS  Google Scholar 

  56. Lesuffleur, A., Swaroop Kumar, L. K. & Gordon, R. Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film. Appl. Phys. Lett. 88, 261104 (2006).

    ADS  Google Scholar 

  57. van Nieuwstadt, J. A. H. et al. Strong modification of the nonlinear optical response of metallic subwavelength hole arrays. Phys. Rev. Lett. 97, 146102 (2006).

    ADS  Google Scholar 

  58. Kujala, S., Canfield, B. K., Kauranen, M., Svirko, Y. & Turunen, J. Multipole interference in the second-harmonic optical radiation from gold nanoparticles. Phys. Rev. Lett. 98, 167403 (2007).

    ADS  Google Scholar 

  59. Czaplicki, R. et al. Dipole limit in second-harmonic generation from arrays of gold nanoparticles. Opt. Express 19, 26866–26871 (2011).

    ADS  Google Scholar 

  60. Canfield, B. K. et al. Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers. Nano Lett. 7, 1251–1255 (2007).

    ADS  Google Scholar 

  61. Valev, V. K. et al. Plasmonic ratchet wheels: switching circular dichroism by arranging chiral nanostructures. Nano Lett. 9, 3945–3948 (2009).

    ADS  Google Scholar 

  62. Valev, V. K. et al. Plasmons reveal the direction of magnetization in nickel nanostructures. ACS Nano 5, 91–96 (2011).

    Google Scholar 

  63. Fan, W. et al. Second harmonic generation from a nanopatterned isotropic nonlinear material. Nano Lett. 6, 1027–1030 (2006).

    ADS  Google Scholar 

  64. Niesler, F. B. P. et al. Second-harmonic generation from split-ring resonators on a GaAs substrate. Opt. Lett. 34, 1997–1999 (2009).

    ADS  Google Scholar 

  65. Chen, K., Durak, C., Heflin, J. R. & Robinson, H. D. Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films. Nano Lett. 7, 254–258 (2007).

    ADS  Google Scholar 

  66. Belardini, A. et al. Tailored second harmonic generation from self-organized metal nano-wires arrays. Opt. Express 17, 3603–3609 (2009).

    ADS  Google Scholar 

  67. Genevet, P. et al. Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. Nano Lett. 10, 4880–4883 (2010).

    ADS  Google Scholar 

  68. Steuwe, C., Kaminski, C. F., Baumberg, J. J. & Mahajan, S. Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces. Nano Lett. 11, 5339–5343 (2011).

    ADS  Google Scholar 

  69. Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    ADS  Google Scholar 

  70. Ko, K. D. et al. Nonlinear optical response from arrays of Au bowtie nanoantennas. Nano Lett. 11, 61–65 (2011).

    ADS  Google Scholar 

  71. Husu, H. et al. Metamaterials with tailored nonlinear optical response. Nano Lett. 12, 673–677 (2012).

    ADS  Google Scholar 

  72. Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. 103, 8410–8426 (1999).

    Google Scholar 

  73. Baida, H. et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys. Rev. Lett. 107, 057402 (2011).

    ADS  Google Scholar 

  74. Piredda, G., Smith, D. D., Wendling, B. & Boyd, R. W. Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient. J. Opt. Soc. Am. B 25, 945–950 (2008).

    ADS  Google Scholar 

  75. Halonen, M., Lipovskii, A. A. & Svirko, Yu. P. Femtosecond absorption dynamics in glass-metal nanocomposites. Opt. Express 15, 6840–6845 (2007).

    ADS  Google Scholar 

  76. Ma, G. et al. Size and dielectric dependence of the third-order nonlinear optical response of Au nanocrystals embedded in matrices. Opt. Lett. 27, 1043–1045 (2002).

    ADS  Google Scholar 

  77. Sipe, J. E. & Boyd, R. W. Nonlinear susceptibility of composite optical materials in the Maxwell-Garnett model. Phys. Rev. A 46, 1614–1629 (1992).

    ADS  Google Scholar 

  78. Kohlgraf-Owens, D. C. & Kik, P. G. Numerical study of surface plasmon enhanced nonlinear absorption and refraction. Opt. Express 16, 16823–16834 (2008).

    ADS  Google Scholar 

  79. Dickson, W. et al. Dielectric-loaded plasmonic nano-antenna arrays: a metamaterial with tuneable optical properties. Phys. Rev. B 76, 115411 (2007).

    ADS  Google Scholar 

  80. Fu, M. et al. Resonantly enhanced optical nonlinearity in hybrid semiconductor quantum dot – metal nanoparticle structures. Appl. Phys. Lett. 100, 063117 (2012).

    ADS  Google Scholar 

  81. Abb, M., Albella, P., Aizpurua, J. & Muskens, O. L. All-optical control of a single plasmonic nanoantenna-ITO hybrid. Nano Lett. 11, 2457–2463 (2011).

    ADS  Google Scholar 

  82. Smolyaninov, I. I., Zayats, A. V., Gungor, A. & Davis, C. C. Single-photon tunneling via localized surface plasmons. Phys. Rev. Lett. 88, 187402 (2002).

    ADS  Google Scholar 

  83. Smolyaninov, I. I., Davis, C. C. & Zayats, A. V. Light-controlled photon tunnelling. Appl. Phys. Lett. 81, 3314–3316 (2002).

    ADS  Google Scholar 

  84. Innes, R. A. & Sambles, J. R. Optical non-linearity in liquid crystals using surface plasmon-polaritons. J. Phys. Condens. Matter 1, 6231–6260 (1989).

    ADS  Google Scholar 

  85. Rotenberg, N., Betz, M. & van Driel, H. M. Ultrafast all-optical coupling of light to surface plasmon polaritons on plain metal surfaces. Phys. Rev. Lett. 105, 017402 (2010).

    ADS  Google Scholar 

  86. Krasavin, A. V. & Zheludev, N. I. Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 84, 1416–1418 (2004).

    ADS  Google Scholar 

  87. Krasavin, A. V., MacDonald, K. F., Zheludev, N. I. & Zayats, A. V. High-contrast modulation of light with light by control of surface plasmon polariton wave coupling. Appl. Phys. Lett. 85, 3369–3371 (2004).

    ADS  Google Scholar 

  88. Pacifici, D., Lezec, H. J. & Atwater, H. A. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nature Photon. 1, 402–406 (2007).

    ADS  Google Scholar 

  89. Pala, R. A., Shimizu, K. T., Melosh, N. A. & Brongersma, M. L. A nonvolatile plasmonic switch employing photochromic molecules. Nano Lett. 8, 1506–1510 (2008).

    ADS  Google Scholar 

  90. Krasavin, A. V. et al. All-plasmonic modulation via stimulated emission of co-propagating surface plasmon polaritons on a substrate with gain. Nano Lett. 11, 2231–2235 (2011).

    ADS  Google Scholar 

  91. MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, M. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009).

    ADS  Google Scholar 

  92. Krasavin, A. V. et al. Optically-programmable nonlinear photonic component for dielectric-loaded plasmonic circuitry. Opt. Express 19, 25222–25229 (2011).

    ADS  Google Scholar 

  93. Krasavin, A. V. & Zayats, A. V. Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides. Appl. Phys. Lett. 97, 041107 (2010).

    ADS  Google Scholar 

  94. Wurtz, G. A. & Zayats, A. V. Nonlinear surface plasmon polaritonic crystals. Laser Photon. Rev. 2, 125–135 (2008).

    ADS  Google Scholar 

  95. Rotenberg, N., Caspers, J. N. & van Driel, H. M. Tunable ultrafast control of plasmonic coupling to gold films. Phys. Rev. B 80, 245420 (2009).

    ADS  Google Scholar 

  96. Smolyaninov, I. I., Zayats, A. V., Stanishevsky, A. & Davis, C. C. Optical control of photon tunneling through an array of nanometer-scale cylindrical channels. Phys. Rev. B 66, 205414 (2002).

    ADS  Google Scholar 

  97. Wurtz, G. A., Pollard, R. & Zayats, A. V. Optical bistability in nonlinear surface plasmon polaritonic crystals. Phys. Rev. Lett. 97, 057402 (2006).

    ADS  Google Scholar 

  98. Minovich, A. et al. Liquid crystal based nonlinear fishnet metamaterials. Appl. Phys. Lett. 100, 121113 (2012).

    ADS  Google Scholar 

  99. Dykhne, A. M., Sarychev, A. K. & Shalaev, V. M. Resonant transmittance through metal films with fabricated and light-induced modulation. Phys. Rev. B 67, 195402 (2003).

    ADS  Google Scholar 

  100. Min, C. et al. All-optical switching in subwavelength metallic grating structure containing nonlinear optical materials. Opt. Lett. 33, 869–871 (2008).

    ADS  Google Scholar 

  101. Porto, J. A., Martín-Moreno, L. & García-Vidal, F. J. Optical bistability in subwavelength slit apertures containing nonlinear media. Phys. Rev. B 70, 081402 (2004).

    ADS  Google Scholar 

  102. Nikolaenko, A. E. et al. Carbon nanotubes in a photonic metamaterial. Phys. Rev. Lett. 104, 153902 (2010).

    ADS  Google Scholar 

  103. Ren, M. et al. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 23, 5540–5544 (2011).

    Google Scholar 

  104. Argyropoulos, C., Chen, P.Y., D'Aguano, G., Engheta, N. & Alu, A. Boosting optical nonlinearities in epsilon-near-zero plasmonic channels. Phys. Rev. B 85, 045129 (2012).

    ADS  Google Scholar 

  105. Wurtz, G. A. et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. Nature Nanotech. 6, 107–111 (2011).

    ADS  Google Scholar 

  106. Wurtz, G. A. et al. Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies. Nano Lett. 7, 1297–1303 (2007).

    ADS  Google Scholar 

  107. Vasa, P. et al. Ultrafast manipulation of strong coupling in metal-molecular aggregate hybrid nanostructures. ACS Nano 4, 7759–7765 (2010).

    Google Scholar 

  108. Agranovich, V. M., Babichenko, V. S. & Chernyak, Y. Ya. Nonlinear surface polaritons. JETP Lett. 32, 512–515 (1980).

    ADS  Google Scholar 

  109. Stegeman, G. I., Seaton, C. T., Ariyasu, J., Wallis, R. F. & Maradudin, A. A. Nonlinear electromagnetic waves guided by a single interface. J. Appl. Phys. 58, 2453–2459 (1985).

    ADS  Google Scholar 

  110. Boardman, A. D., Cooper, G. S., Maradudin, A. A. & Shen, T. P. Surface-polariton solitons. Phys. Rev. B 34, 8273–8278 (1986).

    ADS  Google Scholar 

  111. Davoyan, A. R., Shadrirov, I. V. & Kivshar, Yu. S. Nonlinear plasmonic slot waveguides. Opt. Express 16, 21209–21214 (2008).

    ADS  Google Scholar 

  112. Feigenbaum, E. & Orenstein, M. Plasmon-soliton. Opt. Lett. 32, 674–676 (2007).

    ADS  Google Scholar 

  113. Noskov, R. E., Belov, P. A. & Kivshar, Yu. S. Subwavelength modulational instability and plasmon oscillons in nanoparticle arrays. Phys. Rev. Lett. 108, 093901 (2012).

    ADS  Google Scholar 

  114. Davoyan, A. R., Shadrirov, I. V. & Kivshar, Yu. S. Self-focusing and spatial plasmon-polariton solitons. Opt. Express 17, 21732–21737 (2009).

    ADS  Google Scholar 

  115. Marini, A., Skryabin, D. V. & Malomed, B. Stable spatial plasmon solitons in a dielectric-metal-dielectric geometry with gain and loss. Opt. Express 19, 6616–6622 (2011).

    ADS  Google Scholar 

  116. Ye, F., Mihalache, D., Hu, B. & Panoiu, N. C. Subwavelength plasmonic lattice solitons in arrays of metallic nanowires. Phys. Rev. Lett. 104, 106802 (2010).

    ADS  Google Scholar 

  117. Liu, Y., Bartal, G., Genov, D. A. & Zhang, X. Subwavelength discrete solitons in nonlinear metamaterials. Phys. Rev. Lett. 99, 153901 (2007).

    ADS  Google Scholar 

  118. Zeng, Y., Hoyer, W., Liu, J., Koch, S. W. & Moloney, J. V. Classical theory for second-harmonic generation from metallic nanoparticles. Phys. Rev. B 79, 235109 (2009).

    ADS  Google Scholar 

  119. Benedetti, A., Centini, M., Bertolotti, M. & Sibilia, C. Second harmonic generation from 3D nanoantennas: on the surface and bulk contributions by far-field pattern analysis. Opt. Express 19, 26752–26767 (2011).

    ADS  Google Scholar 

  120. Ciracì, C., Poutrina, E., Scalora, M. & Smith, D. R. Origin of second-harmonic generation enhancement in optical split-ring resonators. Phys. Rev. B 85, 201403 (2012).

    ADS  Google Scholar 

  121. Esteban, R., Borisov, A. G., Nordlander, P. & Aizpurua, J. Bridging quantum and classical plasmonics with a quantum-corrected model. Nature Commun. 3, 825 (2012).

    ADS  Google Scholar 

  122. García de Abajo, F. J. Nonlocal effects in the plasmons of strongly interacting nanoparticles, dimers, and waveguides. J. Phys. Chem. C 112, 17983–17987 (2008).

    Google Scholar 

  123. Kim, E., Wang, F., Wu, W., Yu, Z. & Shen, Y. R. Nonlinear optical spectroscopy of photonic metamaterials. Phys. Rev. B 78, 113102 (2008).

    ADS  Google Scholar 

  124. Hentschel, M., Utikal, T., Giessen, H. & Lippitz, M. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett. 12, 3778–3782 (2012).

    ADS  Google Scholar 

  125. Thyagarajan, K., Rivier, S., Lovera, A. & Martin, O. J. F. Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt. Express 20, 12860–12865 (2012).

    ADS  Google Scholar 

  126. Harutyunyan, H., Volpe, G., Quidant, R. & Novotny, L. Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys. Rev. Lett. 108, 217403 (2012).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martti Kauranen or Anatoly V. Zayats.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauranen, M., Zayats, A. Nonlinear plasmonics. Nature Photon 6, 737–748 (2012). https://doi.org/10.1038/nphoton.2012.244

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.244

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing