Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet

Abstract

Free-electron lasers (FELs) are promising devices for generating light with laser-like properties in the extreme ultraviolet and X-ray spectral regions. Recently, FELs based on the self-amplified spontaneous emission (SASE) mechanism have allowed major breakthroughs in diffraction and spectroscopy applications, despite the relatively large shot-to-shot intensity and photon-energy fluctuations and the limited longitudinal coherence inherent in the SASE mechanism. Here, we report results on the initial performance of the FERMI seeded FEL, based on the high-gain harmonic generation configuration, in which an external laser is used to initiate the emission process. Emission from the FERMI FEL-1 source occurs in the form of pulses carrying energy of several tens of microjoules per pulse and tunable throughout the 65 to 20 nm wavelength range, with unprecedented shot-to-shot wavelength stability, low-intensity fluctuations, close to transform-limited bandwidth, transverse and longitudinal coherence and full control of polarization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the FERMI FEL-1.
Figure 2: Measured FEL intensity at 32.5 nm.
Figure 3: Measured beam profiles and double slit diffraction pattern.
Figure 4: Single-shot and multi-shot spectra at 32.5 nm.

References

  1. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    Article  ADS  Google Scholar 

  2. Als-Nielsen, J. & McMorrow, D. Elements of Modern X-ray Physics (Wiley, 2001).

    Google Scholar 

  3. Madey, J. M. J. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971).

    Article  ADS  Google Scholar 

  4. Elias, L. R., Fairbank, W. M., Madey, J. M. J., Schwettman, H. A. & Smith, T. I. Observation of stimulated emission of radiation by relativistic electrons in a spatially transverse magnetic field. Phys. Rev. Lett. 36, 717–720 (1976).

    Article  ADS  Google Scholar 

  5. Deacon, D. A. G. et al. First operation of a free electron laser. Phys. Rev. Lett. 38, 892–894 (1977).

    Article  ADS  Google Scholar 

  6. Kondratenko, A. M. & Saldin, E. L. Generation of coherent radiation by a relativistic electron beam in an undulator. Part. Accel. 10, 207–216 (1980).

    Google Scholar 

  7. Bonifacio, R., Pellegrini, C. & Narducci, L. Collective instabilities and high gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984).

    Article  ADS  Google Scholar 

  8. Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. The Physics of Free Electron Lasers (Springer, 2000).

    Book  Google Scholar 

  9. Hogan, M. J. et al. Measurements of gain larger than 105 at 12 µm in a self amplified spontaneous emission free electron laser. Phys. Rev. Lett. 81, 4867–4871 (1998).

    Article  ADS  Google Scholar 

  10. Milton, S. et al. Exponential gain and saturation of a self amplified spontaneous emission free electron laser. Science 292, 2037–2041 (2001).

    Article  ADS  Google Scholar 

  11. Ayvazyan, V. et al. Generation of GW radiation pulses from VUV free-electron laser operating in the femtosecond regime. Phys. Rev. Lett. 88, 104802 (2002).

    Article  ADS  Google Scholar 

  12. Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nature Photon. 1, 336–342 (2007).

    Article  ADS  Google Scholar 

  13. Emma, P. et al. First lasing and operation of an angstrom-wavelength free-electron laser. Nature Photon. 4, 641–647 (2010).

    Article  ADS  Google Scholar 

  14. Ishikawa, I. et al. A compact X-ray free-electron laser emitting in the sub-ångström region. Nature Photon. 6, 540–544 (2012).

    Article  ADS  Google Scholar 

  15. Yu, L. H. Generation of intense UV radiation by subharmonically seeded single-pass free-electron lasers. Phys. Rev. A 44, 5178–5193 (1991).

    Article  ADS  Google Scholar 

  16. Yu, L. H. et al. High-gain harmonic-generation free-electron laser. Science 289, 932–934 (2000).

    Article  ADS  Google Scholar 

  17. Xiang, D. et al. Demonstration of the echo-enabled harmonic generation technique for short-wavelength seeded free electron lasers. Phys. Rev. Lett. 105, 114801 (2010).

    Article  ADS  Google Scholar 

  18. Zhao, Z. T. et al. First lasing of an echo-enabled harmonic generation free-electron laser. Nature Photon. 6, 360–363 (2012).

    Article  ADS  Google Scholar 

  19. Čutić, N. et al. Vacuum ultraviolet circularly polarized coherent femtosecond pulses from laser seeded relativistic electrons. Phys. Rev. ST Accel. Beams 14, 030706 (2011).

    Article  ADS  Google Scholar 

  20. Labat, M. et al. High-gain harmonic-generation free-electron laser seeded by harmonics generated in gas. Phys. Rev. Lett. 107, 224801 (2011).

    Article  ADS  Google Scholar 

  21. De Ninno G. et al. Generation of ultrashort coherent vacuum ultraviolet pulses using electron storage rings: a new bright light source for experiments. Phys. Rev. Lett. 101, 053902 (2008).

    Article  ADS  Google Scholar 

  22. Labat, M. et al. Coherent harmonic generation experiments on UVSOR-II storage ring. Nucl. Instrum. Methods A 593, 1–5 (2008).

    Article  ADS  Google Scholar 

  23. Bocchetta, C. J. et al. FERMI@Elettra FEL Conceptual Design Report (Sincrotrone Trieste, 2007).

    Google Scholar 

  24. Bonifacio, R. et al. Physics of the high-gain FEL and superradiance. Rivista del Nuovo Cimento 13(9), 1–69 (1990).

    Article  ADS  Google Scholar 

  25. Kim, K. J. Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers. Phys. Rev. Lett. 57, 1871–1874 (1986).

    Article  ADS  Google Scholar 

  26. Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Statistical properties of radiation from VUV and X-ray free electron laser. Opt. Commun. 148, 383–403 (1998).

    Article  ADS  Google Scholar 

  27. Allaria, E. et al. The FERMI@Elettra free-electron-laser source for coherent X-ray physics: photon properties, beam transport system and applications. New J. Phys. 12, 075002 (2010).

    Article  ADS  Google Scholar 

  28. Sasaki, S. Analyses for a planar variably-polarizing undulator. Nucl. Instrum. Methods A 347, 83–86 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  29. Bonifacio, R., De Salvo Souza, L. & Pierini, P. Generation of XUV light by resonant frequency tripling in a two-wiggler FEL amplifier. Nucl. Instrum. Methods A 296, 787–790 (1990).

    Article  ADS  Google Scholar 

  30. Freund, H. P., Biedron, S. G. & Milton, S. V. Nonlinear harmonic generation in free-electron lasers. IEEE J. Quantum Electron. 36, 275–281 (2000).

    Article  ADS  Google Scholar 

  31. Huang, Z. & Kim, K. J. Three-dimensional analysis of harmonic generation in high-gain free-electron lasers. Phys. Rev. E 62, 7295–7308 (2000).

    Article  ADS  Google Scholar 

  32. Spezzani, C. et al. Coherent light with tunable polarization from single-pass free-electron lasers. Phys. Rev. Lett. 107, 084801 (2011).

    Article  ADS  Google Scholar 

  33. Kokole, M. et al. Magnetic characterization of the FEL-1 undulators for the FERMI@ELETTRA free-electron laser. Proc. FEL 2010, 664–666 (2010).

  34. Ferianis, M. et al. The copper free FERMI timing system: implementation and results. Proc. Beam Instrumentation Workshop 398–402 (2010).

  35. Ben-Zvi, I., Yang, K. M. & Yu, L. H. The ‘fresh-bunch’ technique in FELS. Nucl. Instrum. Methods A 318, 726–729 (1992).

    Article  ADS  Google Scholar 

  36. Allaria, E. & De Ninno, G. Soft-X-ray coherent radiation using a single-cascade free-electron laser. Phys. Rev. Lett. 99, 014801 (2007).

    Article  ADS  Google Scholar 

  37. Fawley, W. M. A user manual for GINGER and its post-processor XPLOTGIN, LBNL Technical Report LBNL-49625 (2002).

  38. Xie, M. Exact and variational solutions of 3D eigenmodes in high gain FELs. Nucl. Instrum. Methods A 445, 59–66 (2000).

    Article  ADS  Google Scholar 

  39. Saldin, E. L., Schneidmiller, E. A. & Yurkov, M. V. Coherence properties of the radiation from X-ray free electron laser. Opt. Commun. 281, 1179–1188 (2008).

    Article  ADS  Google Scholar 

  40. Singer, A. et al. Transverse-coherence properties of the free-electron-laser FLASH at DESY. Phys. Rev. Lett. 101, 254801 (2008).

    Article  ADS  Google Scholar 

  41. Lambert, G. et al. Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nature Phys. 4, 296–300 (2008).

    Article  Google Scholar 

  42. Allaria, E., Danailov, M. D. & De Ninno, G. Tunability of a seeded free-electron laser through frequency pulling. Eur. Phys. Lett. 89, 064005 (2010).

    Article  Google Scholar 

  43. Ratner, D., Fry, A., Stupakov, G. & White, W. Laser phase errors in seeded free electron lasers. Phys. Rev. ST Accel. Beams 15, 030702 (2012).

    Article  ADS  Google Scholar 

  44. Welch, J. et al. FEL spectral measurements at LCLS. Proc. FEL 2011, 461–464 (2011).

  45. Stupakov, G. Using the beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett. 102, 074801 (2009).

    Article  ADS  Google Scholar 

  46. Feldhaus, J., Saldin, E. L., Schneider, J. R., Schneidmiller, E. A. & Yurkov, M. V. Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL. Opt. Commun. 140, 341–352 (1997).

    Article  ADS  Google Scholar 

  47. Geloni, G., Kocharyan, V. & Saldin, E. A novel self-seeding scheme for hard X-ray FELs. J. Mod. Opt. 58, 1391–1403 (2011).

    Article  ADS  Google Scholar 

  48. Amann, J. et al. Demonstration of self-seeding in a hard X-ray free-electron laser. Nature Photon. 6, http://dx.doi.org/10.1038/nphoton.2012.180 (2012).

  49. Zangrando, M. et al. PADReS: the photon analysis delivery and reduction system at the FERMI@Elettra FEL user facility. Rev. Sci. Instrum. 80, 113110 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the many people at Sincrotrone Trieste who contributed to this project, including the accelerator operations group, the electron and systems controls groups, the undulator systems design, X-ray diagnostics/optics, RF engineering, all engineering support teams, procurement and administration. Thanks are also extended to colleagues at Kyma S.r.l. for the timely construction and delivery of the undulators used in the present study. The resources that made possible the construction of FERMI were obtained and managed by G. Comelli, A. Franciosi and C. Rizzuto. The authors acknowledge support from the Italian Government, the Regional Government of Friuli-Venezia Giulia, the European Commission, the European Research Council and the European Investment Bank.

Author information

Authors and Affiliations

Authors

Contributions

E.A. and G.D.N. co-wrote the first draft of the paper. All authors co-developed the FERMI concept, designed, constructed and tested the accelerator and FEL systems, performed experiments and analysed the data. S.V.M. was the FERMI project director in the first phase of the project. M.S. is the current FERMI project director.

Corresponding author

Correspondence to E. Allaria.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allaria, E., Appio, R., Badano, L. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nature Photon 6, 699–704 (2012). https://doi.org/10.1038/nphoton.2012.233

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing