Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The renaissance of dye-sensitized solar cells

Abstract

Several recent major advances in the design of dyes and electrolytes for dye-sensitized solar cells have led to record power-conversion efficiencies. Donor–pi–acceptor dyes absorb much more strongly than commonly employed ruthenium-based dyes, thereby allowing most of the visible spectrum to be absorbed in thinner films. Light-trapping strategies are also improving photon absorption in thin films. New cobalt-based redox couples are making it possible to obtain higher open-circuit voltages, leading to a new record power-conversion efficiency of 12.3%. Solid-state hole conductor materials also have the potential to increase open-circuit voltages and are making dye-sensitized solar cells more manufacturable. Engineering the interface between the titania and the hole transport material is being used to reduce recombination and thus attain higher photocurrents and open-circuit voltages. The combination of these strategies promises to provide much more efficient and stable solar cells, paving the way for large-scale commercialization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dye-sensitized solar cell device schematic and operation.
Figure 2: Best-in-class dye-sensitized solar cells.
Figure 3: Maximum obtainable power-conversion efficiencies versus absorption onset for various loss-in-potentials.
Figure 4: DSC containing ERDs.

Similar content being viewed by others

References

  1. O'Regan, B. & Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991).

    ADS  Google Scholar 

  2. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    ADS  Google Scholar 

  3. Hagfeldt, A. & Grätzel, M. Molecular photovoltaics. Acc. Chem. Rec. 33, 269–277 (2000).

    Google Scholar 

  4. Ardo, S. & Meyer, G. J. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 38, 115–164 (2009).

    Google Scholar 

  5. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).

    Google Scholar 

  6. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 38). Prog. Photovolt. Res. Appl. 19, 565–572 (2011).

    Google Scholar 

  7. Robertson, N. Optimizing dyes for dye-sensitized solar cells. Angew. Chem. Int. Ed. 45, 2338–2345 (2006).

    Google Scholar 

  8. Mishra, A., Fischer, M. K. R. & Bäuerle, P. Metal-free organic dyes for dye-sensitized solar cells: From structure–property relationships to design rules. Angew. Chem. Int. Ed. 48, 2474–2499 (2009).

    Google Scholar 

  9. Oskam, G., Bergeron, B. V., Meyer, G. J. & Searson, P. C. Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J. Phys. Chem. B 105, 6867–6873 (2001).

    Google Scholar 

  10. Nusbaumer, H., Moser, J.-E., Zakeeruddin, S. M., Nazeeruddin, M. K. & Grätzel, M. CoII(dbbip)22+ complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. J. Phys. Chem. B 105, 10461–10464 (2001).

    Google Scholar 

  11. Zhang, Z., Chen, P., Murakami, T. N., Zakeeruddin, S. M. & Grätzel, M. The 2,2,6,6-tetramethyl-1-piperidinyloxy radical: An efficient, iodine-free redox mediator for dye-sensitized solar cells. Adv. Funct. Mater. 18, 341–346 (2008).

    Google Scholar 

  12. Wang, P., Zakeeruddin, S. M., Moser, J.-E., Humphry-Baker, R. & Grätzel, M. A solvent-free, SeCN/(SeCN)3 based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. J. Am. Chem. Soc. 126, 7164–7165 (2004).

    Google Scholar 

  13. Hattori, S., Wada, Y., Yanagida, S. & Fukuzumi, S. Blue copper model complexes with distorted tetragonal geometry acting as effective electron-transfer mediators in dye-sensitized solar cells. Jpn. J. Appl. Phys. 127, 9648–9654 (2005).

    Google Scholar 

  14. Nazeeruddin, M. K. et al. Combined experimental and DFT–TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835–16847 (2005).

    Google Scholar 

  15. Gao, F. et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am. Chem. Soc. 130, 10720–10728 (2008).

    Google Scholar 

  16. Chen, C.-Y. et al. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3, 3103–3109 (2009).

    Google Scholar 

  17. Chiba, Y. et al. Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 45, 638–640 (2006).

    Google Scholar 

  18. Huang, S., Schlichthorl, G., Nozik, A., Grätzel, M. & Frank, A. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 101, 2576–2582 (1997).

    Google Scholar 

  19. Boschloo, G. & Hagfeldt, A. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc. Chem. Rec. 42, 1819–1826 (2009).

    Google Scholar 

  20. Bisquert, J., Fabregat-Santiago, F., Mora-Seroó, I. N., Garcia-Belmonte, G. & Gimeónez, S. Electron lifetime in dye-sensitized solar cells: Theory and interpretation of measurements. J. Phys. Chem. C 113, 17278–17290 (2009).

    Google Scholar 

  21. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    ADS  Google Scholar 

  22. Snaith, H. J. Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv. Funct. Mater. 20, 13–19 (2010).

    Google Scholar 

  23. Koops, S. E., O'Regan, B. C., Barnes, P. R. F. & Durrant, J. R. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 4808–4818 (2009).

    Google Scholar 

  24. Hamann, T. W., Jensen, R. A., Martinson, A. B. F., Ryswyk, H. V. & Hupp, J. T. Advancing beyond current generation dye-sensitized solar cells. Energ. Environ. Sci. 1, 66–78 (2008).

    Google Scholar 

  25. Peter, L. M. The Gra¨tzel cell: Where next? J. Phys. Chem. Lett. 2, 1861–1867 (2011).

    Google Scholar 

  26. Yella, A. et al. Porphyrin-sensitized solar cells with cobalt(II/III)-based redox electrolyte exceed 12 percent efficiency. Science 334, 629–634 (2011).

    ADS  Google Scholar 

  27. Peter, L. M. Dye-sensitized nanocrystalline solar cells. Phys. Chem. Chem. Phys. 9, 2630–2642 (2007).

    Google Scholar 

  28. Snaith, H. J. & Schmidt-Mende, L. Advances in liquid-electrolyte and solid-state dye-sensitized solar cells. Adv. Mater. 19, 3187–3200 (2007).

    Google Scholar 

  29. Grätzel, M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A 164, 3–14 (2004).

    Google Scholar 

  30. Grätzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44, 6841–6851 (2005).

    Google Scholar 

  31. Listorti, A., O'Regan, B. & Durrant, J. R. Electron transfer dynamics in dye-sensitized solar cells. Chem. Mater. 23, 3381–3399 (2011).

    Google Scholar 

  32. Nazeeruddin, M. K. et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613–1624 (2001).

    Google Scholar 

  33. Nazeeruddin, M. K. et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993).

    Google Scholar 

  34. http://minerals.usgs.gov/minerals/pubs/commodity/platinum/myb1-2010-plati.pdf

  35. Horiuchi, T., Miura, H., Sumioka, K. & Uchida, S. High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126, 12218–12219 (2004).

    Google Scholar 

  36. Yum, J.-H. et al. Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. J. Am. Chem. Soc. 129, 10320–10321 (2007).

    Google Scholar 

  37. Campbell, W. M. et al. Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J. Phys. Chem. C 111, 11760–11762 (2007).

    Google Scholar 

  38. He, J. et al. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode. J. Am. Chem. Soc. 124, 4922–4932 (2002).

    Google Scholar 

  39. Bessho, T., Zakeeruddin, S. M., Yeh, C.-Y., Diau, E. W.-G. & Grätzel, M. Highly efficient mesoscopic dye-sensitized solar cells based on donor–acceptor-substituted porphyrins. Angew. Chem. Int. Ed. 49, 6646–6649 (2010).

    Google Scholar 

  40. Lee, C.-W. et al. Novel zinc porphyrin sensitizers for dye-sensitized solar cells: Synthesis and spectral, electrochemical, and photovoltaic properties. Chem. Euro. J. 15, 1403–1412 (2009).

    Google Scholar 

  41. Feldt, S. M. et al. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J. Am. Chem. Soc. 132, 16714–16724 (2010).

    Google Scholar 

  42. Sapp, S. A., Elliott, C. M., Contado, C., Caramori, S. & Bignozzi, C. A. Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells. J. Am. Chem. Soc. 124, 11215–11222 (2002).

    Google Scholar 

  43. Gregg, B. A., Pichot, F., Ferrere, S. & Fields, C. L. Interfaical recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. J. Phys. Chem. B 105, 1422–1429 (2001).

    Google Scholar 

  44. Daeneke, T. et al. High-efficiency dye-sensitized solar cells with ferrocene-based electrolytes. Nature Chem. 3, 211–215 (2011).

    ADS  Google Scholar 

  45. Bai, Y. et al. High-efficiency organic dye-sensitized mesoscopic solar cells with a copper redox shuttle. Chem. Commun. 47, 4376–4378 (2011).

    Google Scholar 

  46. Wang, M. et al. An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chem. 2, 385–389 (2010).

    ADS  Google Scholar 

  47. Tian, H., Yu, Z., Hagfeldt, A., Kloo, L. & Sun, L. Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells. J. Am. Chem. Soc. 133, 9413–9422 (2011).

    Google Scholar 

  48. Klahr, B. M. & Hamann, T. W. Performance enhancement and limitations of cobalt bipyridyl redox shuttles in dye-sensitized solar cells. J. Phys. Chem. C 113, 14040–14045 (2009).

    Google Scholar 

  49. Feldt, S. M., Wang, G., Boschloo, G. & Hagfeldt, A. Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couples. J. Phys. Chem. C 115, 21500–21507 (2011).

    Google Scholar 

  50. Nelson, J. J., Amick, T. J. & Elliott, C. M. Mass transport of polypyridyl cobalt complexes in dye-sensitized solar cells with mesoporous TiO2 photoanodes. J. Phys. Chem. C 112, 18255–18263 (2008).

    Google Scholar 

  51. Bach, U. et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395, 583–585 (1998).

    ADS  Google Scholar 

  52. Chen, P. et al. High open-circuit voltage solid-state dye-sensitized solar cells with organic dye. Nano Lett. 9, 2487–2492 (2009).

    ADS  Google Scholar 

  53. Bach, U. et al. Charge separation in solid-state dye-sensitized heterojunction solar cells. J. Am. Chem. Soc. 121, 7445–7446 (1999).

    Google Scholar 

  54. Snaith, H. J. et al. Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture. Nano Lett. 7, 3372–3376 (2007).

    ADS  Google Scholar 

  55. Burschka, J. et al. Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 133, 18042–18045 (2011).

    Google Scholar 

  56. Schmidt-Mende, L., Kroeze, J. E., Durrant, J. R., Nazeeruddin, M. K. & Grätzel, M. Effect of hydrocarbon chain length of amphiphilic ruthenium dyes on solid-state dye-sensitized photovoltaics. Nano Lett. 5, 1315–1320 (2005).

    ADS  Google Scholar 

  57. Krüger, J., Plass, R., Grätzel, M., Cameron, P. J. & Peter, L. M. Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B 107, 7536–7539 (2003).

    Google Scholar 

  58. Snaith, H. J. et al. Charge collection and pore filling in solid-state dye-sensitized solar cells Nanotechnology 19, 424003 (2008).

    Google Scholar 

  59. Ding, I. K. et al. Pore-filling of spiro-OMeTAD in solid-state dye-sensitized solar cells: Quantification, mechanism, and consequences for device performance. Adv. Func. Mater. 19, 2431–2436 (2009).

    Google Scholar 

  60. Melas-Kyriazi, J. et al. The effect of hole transport material pore filling on photovoltaic performance in solid-state dye-sensitized solar cells. Adv. Eng. Mater. 1, 407–414 (2011).

    Google Scholar 

  61. Zhu, R., Jiang, C.-Y., Liu, B. & Ramakrishna, S. Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye. Adv. Mater. 21, 994–1000 (2009).

    Google Scholar 

  62. Chang, J. A. et al. High-performance nanostructured inorganic−organic heterojunction solar cells. Nano Lett. 10, 2609–2612 (2010).

    ADS  Google Scholar 

  63. Abrusci, A. et al. Facile infiltration of semiconducting polymer into mesoporous electrodes for hybrid solar cells. Energ. Environ. Sci. 4, 3051–3058 (2011).

    Google Scholar 

  64. Moulé, A. J. et al. Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties. J. Appl. Phys. 106, 073111 (2009).

    ADS  Google Scholar 

  65. Wang, M. et al. Surface design in solid-state dye sensitized solar cells: Effects of zwitterionic co-adsorbents on photovoltaic performance. Adv. Func. Mater. 19, 2163–2172 (2009).

    Google Scholar 

  66. Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T. & Durrant, J. R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J. Am. Chem. Soc. 125, 475–482 (2003).

    Google Scholar 

  67. Palomares, E., Clifford, J. N., Haque, S. A., Lutz, T. & Durrant, J. R. Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chem. Commun. 1464–1465 (2002).

  68. Kruger, J. et al. High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl. Phys. Lett. 79, 2085–2087 (2001).

    ADS  Google Scholar 

  69. Fabregat-Santiago, F. et al. The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings. J. Appl. Phys. 96, 6903–6907 (2004).

    ADS  Google Scholar 

  70. Ito, S. et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films 516, 4613–4619 (2008).

    ADS  Google Scholar 

  71. Nishimura, S. et al. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals. J. Am. Chem. Soc. 125, 6306–6310 (2003).

    Google Scholar 

  72. Hagglund, C., Zach, M. & Kasemo, B. Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons. Appl. Phys. Lett. 92, 013113 (2008).

    ADS  Google Scholar 

  73. Standridge, S. D., Schatz, G. C. & Hupp, J. T. Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 8407–8409 (2009).

    Google Scholar 

  74. Brown, M. D. et al. Plasmonic dye-sensitized solar cells using core–shell metal–insulator nanoparticles. Nano Lett. 11, 438–445 (2010).

    ADS  Google Scholar 

  75. Ding, I. K. et al. Plasmonic dye-sensitized solar cells. Adv. Energ. Mater. 1, 52–57 (2011).

    Google Scholar 

  76. Cid, J.-J. et al. Molecular cosensitization for efficient panchromatic dye-sensitized solar cells. Angew. Chem. Int. Ed. 119, 8510–8514 (2007).

    Google Scholar 

  77. Ono, T., Yamaguchi, T. & Arakawa, H. Study on dye-sensitized solar cell using novel infrared dye. Sol. Energ. Mater. Sol. C. 93, 831–835 (2009).

    Google Scholar 

  78. Macor, L. et al. Near-IR sensitization of wide band gap oxide semiconductor by axially anchored Si-naphthalocyanines. Energ. Environ. Sci. 2, 529–534 (2009).

    Google Scholar 

  79. Maeda, T. et al. Near-infrared absorbing squarylium dyes with linearly extended π-conjugated structure for dye-sensitized solar cell applications. Org. Lett. 13, 5994–5997 (2011).

    Google Scholar 

  80. Sayama, K. et al. Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Sol. Energ. Mater. Sol. C. 80, 47–71 (2003).

    Google Scholar 

  81. Hardin, B. E. et al. Energy and hole transfer between dyes attached to titania in cosensitized dye-sensitized solar cells. J. Am. Chem. Soc. 133, 10662–10667 (2011).

    Google Scholar 

  82. Hardin, B. E. et al. Increased light harvesting in dye-sensitized solar cells with energy relay dyes. Nature Photon. 3, 406–411 (2009).

    ADS  Google Scholar 

  83. Siegers, C. et al. A dyadic sensitizer for dye solar cells with high energy-transfer efficiency in the device. Chem. Phys. Chem. 8, 1548–1556 (2007).

    Google Scholar 

  84. Shankar, K., Feng, X. & Grimes, C. A. Enhanced harvesting of red photons in nanowire solar cells: Evidence of resonance energy transfer. ACS Nano 3, 788–794 (2009).

    Google Scholar 

  85. Buhbut, S. et al. Built-in quantum dot antennas in dye-sensitized solar cells. ACS Nano 4, 1293–1298 (2010).

    Google Scholar 

  86. Siegers, C. et al. Overcoming kinetic limitations of electron injection in the dye solar cell via coadsorption and FRET. Chem. Phys. Chem. 9, 793–798 (2008).

    Google Scholar 

  87. Griffith, M. J. et al. Remarkable synergistic effects in a mixed porphyrin dye-sensitized TiO2 film. Appl. Phys. Lett. 98, 163502 (2011).

    ADS  Google Scholar 

  88. Brown, M. D. et al. Surface energy relay between cosensitized molecules in solid-state dye-sensitized solar cells. J. Phys. Chem. C 115, 23204–23208 (2011).

    Google Scholar 

  89. Yum, J. H. et al. Panchromatic response in solid-state dye-sensitized solar cells containing phosphorescent energy relay dyes. Angew. Chem. Int. Ed. 48, 9277–9280 (2009).

    Google Scholar 

  90. Förster, T. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7 (1959).

    Google Scholar 

  91. Lakowicz, J. R. Principles of Fluorescence Spectroscopy Ch. 13–15 (Plenum, 1999).

    Google Scholar 

  92. Yum, J.-H. et al. Incorporating multiple energy relay dyes in liquid dye-sensitized solar cells. Chem. Phys. Chem. 12, 657–661 (2011).

    Google Scholar 

  93. Hoke, E. T., Hardin, B. E. & McGehee, M. D. Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells. Opt. Express 18, 3893–3904 (2010).

    ADS  Google Scholar 

  94. Hardin, B. E. et al. High excitation transfer efficiency from energy relay dyes in dye-sensitized solar cells. Nano Lett. 10, 3077–3083 (2010).

    ADS  Google Scholar 

  95. Mor, G. K. et al. High-efficiency Fo¨rster resonance energy transfer in solid-state dye sensitized solar cells. Nano Lett. 10, 2387–2394 (2010).

    ADS  Google Scholar 

  96. http://www1.eere.energy.gov/solar/sunshot/pdfs/dpw_lushetsky.pdf.

  97. Law, C. et al. Water-based electrolytes for dye-sensitized solar cells. Adv. Mater. 22, 4505–4509 (2010).

    Google Scholar 

  98. Gaynor, W., Burkhard, G. F., McGehee, M. D. & Peumans, P. Smooth nanowire/polymer composite transparent electrodes. Adv. Mater. 23, 2905–2910 (2011).

    Google Scholar 

  99. Hardin, B. E. et al. Laminating solution-processed silver nanowire mesh electrodes onto solid-state dye-sensitized solar cells. Org. Electron. 12, 875–879 (2011).

    Google Scholar 

  100. Asghar, M. I. et al. Review of stability for advanced dye solar cells. Energ. Environ. Sci. 3, 418–426 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. McGehee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardin, B., Snaith, H. & McGehee, M. The renaissance of dye-sensitized solar cells. Nature Photon 6, 162–169 (2012). https://doi.org/10.1038/nphoton.2012.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing