Abstract
The use of commercial long-wavelength (>650 nm) laser dyes in many biophotonic applications has several important limitations, including low absorption at the standard pump wavelength (532 nm) and poor photostability. Here, we demonstrate that the use of Förster type (FRET) energy transfer can overcome these problems to enable efficient, stable near-infrared lasing in a colloidal suspension of latex nanoparticles containing a mixture of Rhodamine 6G and Nile Blue dyes. Experimental and theoretical analyses of the photophysics suggest that the dominant energy transfer mechanism is Förster type via dipole–dipole coupling, and also reveal an unexpected core/shell morphology in the dye-doped nanoparticles. FRET-assisted incoherent random lasing is also demonstrated in solid samples obtained by evaporation of colloidal suspensions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Duarte, F. J. & Hillman, L. W. (eds) Dye Laser Principles (Academic, 1990).
Duarte, F. J. (ed.) Tunable Lasers Handbook (Academic, 1995).
Duarte, F. J. (ed.) Tunable Lasers Applications (CRC, 2009).
Steiner R. in Applied Laser Medicine (eds Berlien, H. P. & Müller, G. H.) 101–106 (Springer-Verlag, 2003).
Backmann, U. (ed.) Lambdachorme Laser Dyes (Lambda Physik, 2000).
Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. (Leipz.) 2, 55–75 (1948).
Förster, T. Experimentelle und theoretische Untersuchung des zwischenmolecularen Uebergangs von Electronenanregungsenergie. Z. Naturforsch. 4A, 321–327 (1949).
Tcherkasskaya, O., Spiro, J. S., Ni, S. & Winnick, A. Energy transfer in restricted geometry: polyisoprene-poly(methyl methacrylate) block copolymer. J. Phys. Chem. 100, 7114–7121 (1996).
Scott, B. J., Bartl, M. H., Wirnsberger, G. & Stucky, G. D. Energy transfer in dye-doped mesostructured composites. J. Phys. Chem. A 107, 5499–5502 (2003).
Li, K. J., Oh, J. H., Kim, Y. & Jang, J. Macroscopic parallel nanocylinder array fabrication using a simple rubbing technique. Adv. Mater. 18, 2213–2215 (2006).
Farinha, J. P. S. & Martinho, J. M. G. Resonance energy transfer in polymer nanodomains. J. Phys. Chem. C 112, 10591–10601 (2008).
Lei, J., Wang, L. & Zhang, J. Radiometric pH sensor based on mesoporous silicananoparticles and Förster resonance energy transfer. Chem. Commun. 46, 8445–8447 (2010).
Sen, T., Jana, S., Koner, S. & Patra, A. Efficient energy transfer between confined dye and Y-zeolite functionalized Au nanoparticles. J. Phys. Chem. C 114, 19667–19672 (2010).
Ma, C., Zeng, F., Huang, L. & Wu, S. FRET-based radiometric detection system for mercury ions in water with polymeric particles as scaffolds. J. Phys. Chem. B 115, 874–882 (2011).
Guo, D., Knight, T. E. & McCusker, J. K. Angular momentum conservation in dipolar energy transfer. Science 334, 1684–1687 (2011).
Wang, L., Liu, Y., Chen, F., Zhang, J. & Anpo, M. Manipulating energy transfer processes between rhodamine 6G and rhodamine B in different mesoporous hosts. J. Phys. Chem. C 111, 5541–5548 (2007).
Wu, C., Zheng, Y., Szymanski, C. & McNeill, J. Energy transfer in a nanoscale multichromophoric system: fluorescent dye-doped conjugated polymer nanoparticles. J. Phys. Chem. C 112, 1772–1781 (2008).
Enciso, E., Costela, A., García-Moreno, I., Martín, V. & Sastre, R. Conventional unidirectional laser action enhanced by eye confined in nanoparticles scatters. Langmuir 26, 6154–6157 (2010).
Martín, V. et al. Photophysical and lasing properties of rhodamine 6G confined in polymeric nanoparticles. J. Phys. Chem. C 115, 3926–3933 (2011).
Costela, A., García-Moreno, I. & Sastre, R. Polymeric solid-state dye lasers: recent developments. Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
Lakowicz, J. R. (ed.) Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).
Yekta, A., Winnik, M. A., Farinha, J. P. S. & Martinho, J. M. G. Dipole–dipole electronic energy transfer. Fluorescence decay functions for arbitrary distributions of donors and acceptors. II. Systems with spherical symmetry. J. Phys. Chem. A 101, 1787–1792 (1997).
Farinha, J. P. S., Charreyre, M-T., Martinho, J. M. G., Winnik, M. A. & Pichot, C. Picosecond fluorescence studies of the surface morphology of charged polystyrene latex particles. Langmuir 17, 2617–2623 (2001).
Barberan-Santos, M. N., Nunes Pereira, E. J. & Martinho, J. M. G. Stochastic theory of combined radiative and nonradiative transport. J. Chem. Phys. 107, 10480–10484 (1997).
Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).
Cao, H. Lasing in random media. Waves Random Media 13, R1–R39 (2003).
Andreasen, J. et al. Modes of random lasers. Adv. Opt. Photon. 3, 88–127 (2011).
Lopez Arbeloa, F., Lopez Arbeloa, T. & Lopez Arbeloa, I. in Handbook of Advances Electronic and Photonic Materials and Devices Ch. 5 (Academic, 2001).
López Arbeloa, I. Fluorescence quantum yield evaluation: corrections for re-absorption and re-emission. J. Photochem. 14, 97–105 (1980).
Acknowledgements
This work was supported by the Spanish MICINN (projects TRACE2009-0144, MAT2010-20646-C04-01, MAT2010-20646-C04-04 and MAT2007-65711-C04-02). The authors thank Gobierno Vasco (IT339-10) and Universidad Complutense/Banco Santander (grant no. 921556) for financial support. L.C. thanks MICINN for a predoctoral scholarship (FPI, co-financed by Fondo Social Europeo). The authors also acknowledge technical assistance from the ICTS Microscopy National Center (UCM).
Author information
Authors and Affiliations
Contributions
L.C. conducted the theoretical FRET analysis and solid sample measurements. E.E. proposed the study of FRET phenomenology in nanoparticles, synthesized the particles and helped with the theoretical FRET analysis. V.M. contributed with sample preparation. J.B. and I.L.-A. conducted the photophysical studies. A.C. supervised and coordinated the project. I.G.-M. conducted the laser measurements and supervised and coordinated the project. L.C. and I.G.-M. coordinated the manuscript preparation. All authors contributed to writing the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 954 kb)
Rights and permissions
About this article
Cite this article
Cerdán, L., Enciso, E., Martín, V. et al. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nature Photon 6, 621–626 (2012). https://doi.org/10.1038/nphoton.2012.201
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2012.201
This article is cited by
-
Dual-wavelength switchable single-mode lasing from a lanthanide-doped resonator
Nature Communications (2022)
-
Advances in organic micro/nanocrystals with tunable physicochemical properties
Science China Materials (2022)
-
Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles
Nature Protocols (2021)
-
Tuneable red, green, and blue single-mode lasing in heterogeneously coupled organic spherical microcavities
Light: Science & Applications (2020)
-
Intermolecular distance measurement with TNT suppressor on the M13 bacteriophage-based Förster resonance energy transfer system
Scientific Reports (2019)