Sapphire-derived all-glass optical fibres

Abstract

As performance demands continue to grow, many optical fibre systems are operating at progressively higher power levels. However, Brillouin scattering restricts continued power scaling in narrow-linewidth systems. Optical fibres with engineered Brillouin properties that are manufactured using industry-accepted methods would be of great practical benefit. Here, we show all-glass optical fibres derived from sapphire that have alumina concentrations of up to 55 mol%, which is considerably greater than conventionally possible and enables a series of useful properties. Specifically, a Brillouin gain coefficient of 3.1 × 10−13 m W−1, a value nearly 100 times lower than commercial fibre, was measured for a fibre with an average alumina concentration of 54 mol%. Furthermore, a fibre with 38 mol% alumina was found to be athermal, with a Brillouin frequency that was insensitive to changes in temperature. Such optical fibres may be beneficial in realizing enhanced telecommunication, sensor and high-energy laser systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Selected optical, compositional and dimensional properties of sapphire-derived fibres.
Figure 2: Measured attenuation of the sapphire-derived fibre using a cut-back method over a distance of 5 m.
Figure 3: Brillouin spectra for three segments of the sapphire-derived fibre corresponding to different alumina contents in the core.
Figure 4: Acoustic velocity and Brillouin linewidth as a function of alumina concentration in sapphire-derived optical fibres.
Figure 5: Absolute and normalized BGCs as a function of alumina concentration in sapphire-derived optical fibres.
Figure 6: Selected Brillouin properties of sapphire-derived optical fibres.

References

  1. 1

    Richardson, D., Nilsson, J. & Clarkson, W. High power fibre lasers: current status and future perspectives. J. Opt. Soc. Am. B 27, B63–B92 (2011).

    Article  Google Scholar 

  2. 2

    Horiguchi, T., Kurashima, T. & Tateda, M. A technique to measure distributed strain in optical fibres. IEEE Photon. Technol. Lett. 2, 352–354 (1990).

    ADS  Article  Google Scholar 

  3. 3

    Bao, X., Webb, D. & Jackson, D. 22-km distributed temperature sensor using Brillouin gain in an optical fibre. Opt. Lett. 18, 552–554 (1993).

    ADS  Article  Google Scholar 

  4. 4

    Ballato, J. et al. On the fabrication of all-glass optical fibres from crystals. J. Appl. Phys. 105, 053110 (2009).

    ADS  Article  Google Scholar 

  5. 5

    Dragic, P., Law, P.-C., Ballato, J., Hawkins, T. & Foy, P. Brillouin spectroscopy of YAG-derived optical fibres. Opt. Express 18, 10055–10067 (2010).

    ADS  Article  Google Scholar 

  6. 6

    Dragic, P., Liu, Y.-S., Ballato, J., Hawkins, T. & Foy, P. YAG-derived fibre for high-power narrow-linewidth fibre lasers. Proc. SPIE 8237, 82371E (2012).

    Article  Google Scholar 

  7. 7

    Dragic, P., Ballato, J., Hawkins, T. & Foy, P. Feasibility of Yb:YAG-derived silicate fibres as gain media. Opt. Mater. 34, 1294–1298 (2012).

    ADS  Article  Google Scholar 

  8. 8

    Yoo, S., Webb, A. S., Standish, R. I., May-Smith, T. C. & Sahu, J. K. 5.4W cladding-pumped Nd:YAG silica fiber laser. Proc. Conf. Lasers and Electro-Optics paper CM2N.2 (2012).

  9. 9

    Ballato, J. & Snitzer, E. Fabrication of fibres with high rare-earth concentrations for Faraday isolator applications. Appl. Opt. 34, 6848–6854 (1995).

    ADS  Article  Google Scholar 

  10. 10

    Di Labio, L., Luthy, W., Romano, V., Sandoz, F. & Feurer, T. Superbroadband fluorescence fibre fabricated with granulated oxides. Opt. Lett. 33, 1050–1052 (2008).

    ADS  Article  Google Scholar 

  11. 11

    Kitabayashi, T. et al. Population inversion factor dependence of photodarkening of Yb-doped fibers and its suppression by highly aluminium doping. Proc. Opt. Fiber Commun. Conf. paper OThC5 (2006).

  12. 12

    Davis, T. & Vedam, K. Photoelastic properties of sapphire (α-Al2O3). J. Appl. Phys. 38, 4555–4556 (1967).

    ADS  Article  Google Scholar 

  13. 13

    Jeong, Y. et al. Power scaling of single-frequency ytterbium-doped fibre master-oscillator power-amplifier sources up to 500 W. IEEE Sel. Top. Quantum Electron. 13, 546–551 (2007).

    ADS  Article  Google Scholar 

  14. 14

    Gray, S. et al. 502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fibre amplifier. Opt. Express 15, 017044 (2007).

    Article  Google Scholar 

  15. 15

    Kobayashi, S., Nakagome, H., Shimizu, N., Tsuchiya, H. & Izawa, T. Low-loss optical glass fibre with Al2O3-SiO2 core. Electron. Lett. 10, 410–411 (1974).

    Article  Google Scholar 

  16. 16

    Li, M.-J. et al. Al/Ge co-doped large mode area fibre with high SBS threshold. Opt. Express 13, 8290–8299 (2007).

    ADS  Article  Google Scholar 

  17. 17

    Dragic, P. SBS suppressed, single mode Yb-doped fiber amplifier. Proc. Opt. Fiber Commun. Conf. paper JThA10 (2009).

  18. 18

    Gruner-Nielsen, L. et al. A silica based highly nonlinear fibre with improved threshold for stimulated Brillouin scattering. Proc. Euro. Conf. Opt. Commun. paper Tu.4.D.3 (2010).

  19. 19

    Yablon, A. Multi-wavelength optical fibre refractive index profiling by spatially resolved Fourier transform spectroscopy. J. Lightwave Technol. 28, 360–364 (2010).

    ADS  Article  Google Scholar 

  20. 20

    Dragic, P. Estimating the effect of Ge doping on the acoustic damping coefficient via a highly Ge-doped MCVD silica fibre. J. Opt. Soc. Am. B 26, 1614–1620 (2009).

    ADS  Article  Google Scholar 

  21. 21

    Lai, C. et al. Yb3+:YAG silica fibre laser. Opt. Lett. 34, 2357–2359 (2009).

    ADS  Article  Google Scholar 

  22. 22

    Nassau, K., Shiever, J. & Krause, J. Preparation and properties of fused silica containing alumina. J. Am. Ceram. Soc. 58, 461 (1975).

    Article  Google Scholar 

  23. 23

    Simpson, J. & MacChesney, J. Optical fibres with an Al2O3-doped silicate core composition. Electron. Lett. 19, 261–262 (1983).

    ADS  Article  Google Scholar 

  24. 24

    Morris, S. et al. Cladding glass development for semiconductor core optical fibres. Int. J. Appl. Glass Sci. 2, 144–153 (2012).

    Article  Google Scholar 

  25. 25

    MacDowell, J. & Beall, G. Immiscibility and crystallization in Al2O3–SiO2 glasses. J. Am. Ceram. Soc. 52, 17–25 (1969).

    Article  Google Scholar 

  26. 26

    Cahn, J. & Charles, R. Initial stages of phase separation in glasses. Phys. Chem. Glasses 6, 181–191 (1965).

    Google Scholar 

  27. 27

    Takamori, T. & Roy, R. Rapid crystallization of SiO2–Al2O3 glasses. J. Am. Ceram. Soc. 56, 630–644 (1973).

    Article  Google Scholar 

  28. 28

    Taylor, W. Structure of silliminite and mullite. Z. Krist. 68, 503–521 (1928).

    Google Scholar 

  29. 29

    Nubling, R. & Harrington, J. Optical properties of single-crystal sapphire fibres. Appl. Opt. 36, 5934–5940 (1997).

    ADS  Article  Google Scholar 

  30. 30

    Dragic, P. Simplified model for effect of Ge doping on silica fibre acoustic properties. Electron. Lett. 45, 256–257 (2009).

    Article  Google Scholar 

  31. 31

    Jen, C. et al. Acoustic characterization of silica glasses. J. Am. Ceram. Soc. 76, 712–716 (1993).

    Article  Google Scholar 

  32. 32

    Agrawal, G. Nonlinear Fibre Optics (Academic Press, 1995).

  33. 33

    Huggins, M. & Sun, K. Calculation of density and optical constants of a glass from its composition in weight percentage. J. Am. Ceram. Soc. 26, 4–11 (1943).

    Article  Google Scholar 

  34. 34

    Eilers, H., Strauss, E. & Yen, W. Photoelastic effect in Ti3+-doped sapphire. Phys. Rev. B 45, 9604–9610 (1992).

    ADS  Article  Google Scholar 

  35. 35

    Dragic, P. Brillouin gain reduction via B2O3 doping. J. Lightwave Technol. 29, 967–973 (2011).

    ADS  Article  Google Scholar 

  36. 36

    Law, P., Croteau, A. & Dragic, P. Acoustic coefficients of P2O5-doped silica fibre: the strain-optic and strain-acoustic coefficients. Opt. Mater. Exp. 2, 391–404 (2012).

    ADS  Article  Google Scholar 

  37. 37

    Law, P., Liu, Y., Croteau, A. & Dragic, P. Acoustic coefficients of P2O5-doped silica fibre: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient. Opt. Mater. Exp. 1, 686–699 (2011).

    ADS  Article  Google Scholar 

  38. 38

    Smith, R. Optical power handling capacity of low loss optical fibres as determined by stimulated Raman and Brillouin scattering. Appl. Opt. 11, 2489–2492 (1972).

    ADS  Article  Google Scholar 

  39. 39

    Sinogeikin, S., Lakshtanov, D., Nicholas, J., Jackson, J. & Bass, J. High temperature elasticity measurements on oxides by Brillouin spectroscopy with resistive and IR laser heating. J. Euro. Ceram. Soc. 25, 1313–1324 (2005).

    Article  Google Scholar 

  40. 40

    Thomas, M., Andersson, S., Sova, R. & Joseph, R. Frequency and temperature dependence of the refractive index of sapphire. Infrared Phys. Technol. 39, 235–249 (1998).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank C. Dunn for technical support and A. Yablon for the refractive index profile measurements.

Author information

Affiliations

Authors

Contributions

P.D. conducted experimental work, analysed data and wrote some of the manuscript. T.H., P.F. and S.M. synthesized the fibres and conducted experimental work. J.B. conceived the work, analysed data and wrote some of the manuscript.

Corresponding author

Correspondence to J. Ballato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 842 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dragic, P., Hawkins, T., Foy, P. et al. Sapphire-derived all-glass optical fibres. Nature Photon 6, 627–633 (2012). https://doi.org/10.1038/nphoton.2012.182

Download citation

Further reading