Letter | Published:

Realization of quantum Wheeler's delayed-choice experiment

Nature Photonics volume 6, pages 600604 (2012) | Download Citation

Abstract

Light is believed to exhibit wave–particle duality1 depending on the detecting devices, according to Bohr's complementarity principle2, as has been demonstrated by the ‘delayed-choice experiment’ with classical detecting devices3,4,5,6,7,8,9. A recent proposal10 suggests that the detecting device can also occupy a quantum state, and a quantum version of the delayed-choice experiment can be performed. Here, we experimentally realize the quantum delayed-choice experiment and observe the wave–particle morphing phenomenon of a single photon. We also illustrate, for the first time, the behaviour of the quantum wave–particle superposition state of a single photon. We find that the quantum wave–particle superposition state is distinct from the classical mixture state because of quantum interference between the wave and particle states. Our work reveals the deep relationship between the complementarity principle and the superposition principle, and it may be helpful in furthering understanding of the behaviour of light.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

References

  1. 1.

    Quantum Mechanics: An Introduction (Springer, 2001).

  2. 2.

    in Quantum Theory and Measurement (eds Wheeler, J. A. & Zurek, W. H.) 9–49 (Princeton University Press, 1984).

  3. 3.

    in Mathematical Foundations of Quantum Theory (eds Marlow, A.R.) 9–48 (Academic Press, 1978).

  4. 4.

    et al. Delayed choices in atom Stern–Gerlach interferometry. Phys. Rev. A 54, 5042–5047 (1996).

  5. 5.

    , , , & Delayed ‘choice’ quantum eraser. Phys. Rev. Lett. 84, 1–5 (2000).

  6. 6.

    , , & Delayed-choice experiments in quantum interference. Phys. Rev. A 35, 2532–2541 (1987).

  7. 7.

    , & A wave–particle delayed-choice experiment with a single-photon state. Z. Phys. B 77, 347–352 (1989).

  8. 8.

    et al. Experimental realization of Wheeler's delayed-choice gedanken experiment. Science 315, 966–968 (2007).

  9. 9.

    et al. Delayed-choice test of quantum complementarity with interfering single photons. Phys. Rev. Lett. 100, 220402 (2008).

  10. 10.

    & Proposal for a quantum delayed-choice experiment. Phys. Rev. Lett. 107, 230406 (2011).

  11. 11.

    The Rise of the Wave Theory of Light: Optical Theory and Experiment in the Early Nineteenth Century (University of Chicago Press, 1989).

  12. 12.

    On the law of distribution of energy in the normal spectrum. Annalen der Physik 4, 553–563 (1901).

  13. 13.

    On a heuristic viewpoint concerning the production and transformation of light. Annalen der Physik 17, 132–148 (1905).

  14. 14.

    Experimental demonstration of the general law of the interference of light. Phil. Trans. R. Soc. Lond. 94, 1–16 (1804).

  15. 15.

    Ortsbestimmung eines elektrons durch ein mikroskop. Z. Phys. 70, 114–130 (1931).

  16. 16.

    Zur Deutung der Quantenmechanik. Z. Phys. 118, 489–509 (1941).

  17. 17.

    in Quantum Theory and Measurement (eds Wheeler, J. A. & Zurek, W. H.) 182–213 (Princeton University Press, 1984).

  18. 18.

    in Compendium of Quantum Physics (eds Greenberger, D., Hentschel, K. & Weinert, F.) 161–166 (Springer, 2009).

  19. 19.

    et al. Experimental delayed-choice entanglement swapping. Nature Phys. 8, 479–484 (2012).

  20. 20.

    Focus: another step back for wave–particle duality. Physics 4, 102–104 (2011).

  21. 21.

    et al. Direct observation of single InAs/GaAs quantum dot spectrum without mesa or mask. Phys. E 41, 797–800 (2009).

  22. 22.

    , , & Revisiting Bohr's principle of complementarity using a quantum device. Preprint at (2012).

  23. 23.

    & Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972).

  24. 24.

    , , , & Experimental test of the Kochen–Specker theorem with single photons. Phys. Rev. Lett. 90, 250401 (2003).

  25. 25.

    & Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A 128, 391–394 (1988).

  26. 26.

    , & Two interferometric complementarities. Phys. Rev. A 51, 54–67 (1995).

  27. 27.

    Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154–2157 (1996).

  28. 28.

    & in The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics Ch. 2 (Jones & Bartlett, 1997).

  29. 29.

    , , & Experimentally witnessing the initial correlation between an open quantum system and its environment. Phys. Rev. A 83, 064102 (2011).

  30. 30.

    et al. Convenient exciton lifetime measurement of quantum dots with high resolution. Physica E 42, 196–199 (2009).

Download references

Acknowledgements

The authors thank H.-Q. Ni for sample growth. This work was supported by the National Fundamental Research Program, National Natural Science Foundation of China (grant nos 60921091, 10874162 and 10734060).

Author information

Affiliations

  1. Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei, 230026, China

    • Jian-Shun Tang
    • , Yu-Long Li
    • , Xiao-Ye Xu
    • , Guo-Yong Xiang
    • , Chuan-Feng Li
    •  & Guang-Can Guo

Authors

  1. Search for Jian-Shun Tang in:

  2. Search for Yu-Long Li in:

  3. Search for Xiao-Ye Xu in:

  4. Search for Guo-Yong Xiang in:

  5. Search for Chuan-Feng Li in:

  6. Search for Guang-Can Guo in:

Contributions

C-F.L. and J-S.T. planned and designed the experiments. J-S.T., Y-L.L. and G-Y.X. implemented the experiments. G-C.G., J-S.T. and X-Y.X. carried out the theoretical analysis and developed the interpretation. C-F.L. and J-S.T. wrote the paper and all authors discussed its contents. C-F.L. supervised the project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Chuan-Feng Li.

Supplementary information

PDF files

  1. 1.

    Supplementary information

    Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2012.179