Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Maximal energy transport through disordered media with the implementation of transmission eigenchannels

Abstract

Complex media such as random nanostructures and biological tissues induce multiple wave scattering, which interrupts the propagation of waves and attenuates energy transmission. Even for a highly disordered medium, however, it is possible in principle to enhance the delivery of energy to the far side of the medium. Similar to the resonator modes in linear optical cavities, specific modes called eigenchannels exist in a disordered medium and have extraordinarily high transmission. In this Letter, we report the first experimental realization of transmission eigenchannels in a disordered medium and show that an eigenchannel transports 3.99 times more energy than uncontrolled waves, which is the best experimental record reported to date. Our study will open up new avenues for enhancing light energy delivery to biological tissues for medical purposes and for controlling the lasing threshold in random lasers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up for recording a transmission matrix and generating each transmission eigenchannel.
Figure 2: Construction of a transmission matrix for a disordered medium.
Figure 3: Experimental implementation of the maximum transmission eigenchannel.
Figure 4: Experimentally measured transmittance of individual eigenchannels.
Figure 5: Wavefront-shaping method.

Similar content being viewed by others

References

  1. Aubry, A. & Derode, A. Random matrix theory applied to acoustic backscattering and imaging in complex media. Phys. Rev. Lett. 102, 084301 (2009).

    Article  ADS  Google Scholar 

  2. Freund, I. Looking through walls and around corners. Physica A 168, 49–65 (1990).

    Article  ADS  Google Scholar 

  3. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    Article  ADS  Google Scholar 

  4. Lerosey, G., De Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    Article  ADS  Google Scholar 

  5. Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  6. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).

    Article  ADS  Google Scholar 

  7. van Putten, E. G. et al. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011).

    Article  ADS  Google Scholar 

  8. Choi, Y. et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett. 107, 023902 (2011).

    Article  ADS  Google Scholar 

  9. Dorokhov, O. N. On the coexistence of localized and extended electronic states in the metallic phase. Solid State Commun. 51, 381–384 (1984).

    Article  ADS  Google Scholar 

  10. Beenakker, C. W. J. Random-matrix theory of quantum transport. Rev. Mod. Phys. 69, 731–808 (1997).

    Article  ADS  Google Scholar 

  11. Shi, Z. & Genack, A. Z. Transmission eigenvalues and the bare conductance in the crossover to Anderson localization. Phys. Rev. Lett. 108, 043901 (2012).

    Article  ADS  Google Scholar 

  12. Vellekoop, I. M. & Mosk, A. P. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 (2008).

    Article  ADS  Google Scholar 

  13. Cizmar, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).

    Article  ADS  Google Scholar 

  14. Katz, O., Small, E., Bromberg, Y., & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    Article  ADS  Google Scholar 

  15. McCabe, D. J. et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nature Commun. 2, 447 (2011).

    Article  Google Scholar 

  16. Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    Article  ADS  Google Scholar 

  17. Pendry, J. B. Quasi-extended electron states in strongly disordered systems. J. Phys. C 20, 733–742 (1987).

    Article  ADS  Google Scholar 

  18. Bertolotti, J., Gottardo, S., Wiersma, D. S., Ghulinyan, M. & Pavesi, L. Optical necklace states in Anderson localized 1D systems. Phys. Rev. Lett. 94, 113903 (2005).

    Article  ADS  Google Scholar 

  19. Choi, W., Mosk, A. P., Park, Q. H. & Choi, W. Transmission eigenchannels in a disordered medium. Phys. Rev. B 83, 134207 (2011).

    Article  ADS  Google Scholar 

  20. Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    Article  ADS  Google Scholar 

  21. Kim, J. W., Galanzha, E. I., Shashkov, E. V., Moon, H. M. & Zharov, V. P. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nature Nanotech. 4, 688–694 (2009).

    Article  ADS  Google Scholar 

  22. Dolmans, D. E. J. G. J., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nature Rev. Cancer 3, 380–387 (2003).

    Article  Google Scholar 

  23. Ji, N., Milkie, D. E. & Betzig, E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nature Methods 7, 141–U184 (2009).

    Article  Google Scholar 

  24. Babcock, H. W. Adaptive optics revisited. Science 249, 253–257 (1990).

    Article  ADS  Google Scholar 

  25. Rueckel, M., Mack-Bucher, J. A. & Denk, W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl Acad. Sci. USA 103, 17137–17142 (2006).

    Article  ADS  Google Scholar 

  26. van Putten, E. G., Vellekoop, I. M. & Mosk, A. P. Spatial amplitude and phase modulation using commercial twisted nematic LCDs. Appl. Opt. 47, 2076–2081 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Fang-Yen for helpful discussions. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2011-0005018, 2011-0016568, 2011-0029807 and 2011-0020205).

Author information

Authors and Affiliations

Authors

Contributions

W.C., M.K. and Y.C. conceived the experiment. M.K. carried out the measurements and analysed the data together with Y.C., C.Y. and W.C. W.C.* and Q.P. performed theoretical studies and supported data interpretation. J.K. supported the design of the optical set-up. M.K., Q.P. and W.C. prepared the manuscript, with all authors contributing to the final version. (W.C. and W.C.* refer to Wonshik Choi and Wonjun Choi, respectively.)

Corresponding author

Correspondence to Wonshik Choi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 879 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M., Choi, Y., Yoon, C. et al. Maximal energy transport through disordered media with the implementation of transmission eigenchannels. Nature Photon 6, 581–585 (2012). https://doi.org/10.1038/nphoton.2012.159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.159

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing