Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Looking around corners and through thin turbid layers in real time with scattered incoherent light

Abstract

Imaging with optical resolution through turbid media is a long sought-after goal with important applications in deep tissue imaging. Although extensively studied1, this goal was considered impractical until recently. Adaptive-optics techniques2,3, which can correct weak aberrations, are inadequate for turbid samples, where light is scattered to complex speckle patterns with a number of modes greatly exceeding the number of degrees of control4. This conception changed after the demonstration of coherent focusing through turbid media by wavefront-shaping, using spatial light modulators5,6,7. Here, we show that wavefront-shaping enables wide-field imaging through turbid layers with incoherent illumination, and imaging of occluded objects using light scattered from diffuse walls. In contrast to the recently introduced schemes for imaging through turbid media8,9,10,11,12,13,14,15, our technique does not require coherent sources8,9,10,11,12,13,14, interferometric detection10,11,12,13,14, raster-scanning8,9,10,14,15 or off-line reconstruction11,12,13,14,15. Our results bring wavefront-shaping closer to practical applications and realize the vision of looking through ‘walls’ and around corners16.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic of the experiment for imaging through thin scattering layers.
Figure 2: Imaging through a highly scattering diffuser: experimental results.
Figure 3: Looking ‘around corners’ with incoherent light.

References

  1. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nature Methods 7, 603–614 (2010).

    Article  Google Scholar 

  2. Tyson, R. K. Principles of Adaptive Optics, 3rd edn (Academic Press, 2010).

    Book  Google Scholar 

  3. Booth, M. J., Débarre, D. & Jesach, A. Adaptive optics for biomedical microscopy. Opt. Photon. News 23, 22–29 (2012).

    ADS  Article  Google Scholar 

  4. Sebbah, P. Waves and Imaging Through Complex Media (Kluwer Academic, 2001).

    Book  Google Scholar 

  5. Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Article  Google Scholar 

  6. Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  7. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nature Photon. 6, 283–292 (2012).

    ADS  Article  Google Scholar 

  8. Vellekoop, I. M. & Aegerter, C. M. Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. 35, 1245–1247 (2010).

    ADS  Article  Google Scholar 

  9. van Putten, E. G. et al. Scattering lens resolves sub-100 nm structures with visible light. Phys. Rev. Lett. 106, 193905 (2011).

    ADS  Article  Google Scholar 

  10. Hsieh, C.-L., Pu, Y., Grange, R., Laporte, G. & Psaltis, D. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle. Opt. Express 18, 20723–20731 (2010).

    ADS  Article  Google Scholar 

  11. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Article  Google Scholar 

  12. Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nature Commun. 1, 81 (2010).

    ADS  Article  Google Scholar 

  13. Choi, Y. et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Phys. Rev. Lett. 107, 023902 (2011).

    ADS  Article  Google Scholar 

  14. Xu, X., Liu, H. & Wang, L. V. Time-reversed ultrasonically encoded optical focusing into scattering media. Nature Photon. 5, 154–157 (2011).

    ADS  Article  Google Scholar 

  15. Velten, A. et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nature Commun. 3, 745 (2012).

    Article  Google Scholar 

  16. Freund, I. Looking through walls and around corners. Physica A 168, 49–65 (1990).

    ADS  Article  Google Scholar 

  17. Feng, S., Kane, C., Lee, P. A. & Stone, A. D. Correlations and fluctuations of coherent wave transmission through disordered media. Phys. Rev. Lett. 61, 834–837 (1988).

    ADS  Article  Google Scholar 

  18. Freund, I., Rosenbluh, M. & Feng, S. Memory effects in propagation of optical waves through disordered media. Phys. Rev. Lett. 61, 2328–2331 (1988).

    ADS  Article  Google Scholar 

  19. Fried, D. L. Anisoplanatism in adaptive optics. J. Opt. Soc. Am. 72, 52–61 (1982).

    ADS  Article  Google Scholar 

  20. Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).

    ADS  Article  Google Scholar 

  21. Fink, M. Time reversed acoustics. Physics Today 50, 34–40 (1997).

    Article  Google Scholar 

  22. Derode, A., Roux, P. & Fink, M. Robust acoustic time reversal with high-order multiple scattering. Phys. Rev. Lett. 75, 4206–4209 (1995).

    ADS  Article  Google Scholar 

  23. Lemoult, F., Lerosey, G., de Rosny, J. & Fink, M. Manipulating spatiotemporal degrees of freedom of waves in random media. Phys. Rev. Lett. 103, 173902 (2009).

    ADS  Article  Google Scholar 

  24. Lerosey, G., de Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    ADS  Article  Google Scholar 

  25. Kogelnik, H. & Pennington, K. S. Holographic imaging through a random medium. J. Opt. Soc. Am. 58, 273–274 (1968).

    Article  Google Scholar 

  26. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nature Photon. 2, 110–115 (2008).

    ADS  Article  Google Scholar 

  27. van Beijnum, F., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Frequency bandwidth of light focused through turbid media. Opt. Lett. 36, 373–375 (2011).

    ADS  Article  Google Scholar 

  28. Conkey, D. B., Caravaca-Aguirre, A. M. & Piestun, R. High-speed scattering medium characterization with application to focusing light through turbid media. Opt. Express 20, 1733–1740 (2012).

    ADS  Article  Google Scholar 

  29. Blow, N. Cell imaging: new ways to see a smaller world. Nature 456, 825–828 (2008).

    ADS  Article  Google Scholar 

  30. Rueckel, M., Mack-Bucher, J. A. & Denk, W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl Acad. Sci. USA 103, 17137–17142 (2006).

    ADS  Article  Google Scholar 

  31. Freund, I. Time-reversal symmetry and image reconstruction through multiple-scattering media. J. Opt. Soc. Am. A 9, 456–463 (1992).

    ADS  Article  Google Scholar 

  32. Katz, O., Small, E., Bromberg, Y. & Silberberg, Y. Focusing and compression of ultrashort pulses through scattering media. Nature Photon. 5, 372–377 (2011).

    ADS  Article  Google Scholar 

  33. Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    ADS  Article  Google Scholar 

  34. McCabe, D. J. et al. Spatio-temporal focusing of an ultrafast pulse through a multiply scattering medium. Nature Commun. 2, 447 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Bromberg for stimulating discussions, and G. Han, Y. Shopen, G. Elazar, B. Sharon, Y. Shimoni and R. Baron for technical assistance. E.S. acknowledges support from the Adams Fellowship. This work was also supported by the Israel Science Foundation, ERC advanced grant QUAMI, and the Crown Photonics Center.

Author information

Authors and Affiliations

Authors

Contributions

O.K. conceived the idea. O.K. and E.S. contributed equally to the experimental design, measurements and analysis. O.K. wrote the manuscript, with contributions from all authors.

Corresponding author

Correspondence to Yaron Silberberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Movie

Supplementary Movie (MOV 205 kb)

Supplementary Movie

Supplementary Movie (PDF 742 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katz, O., Small, E. & Silberberg, Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light. Nature Photon 6, 549–553 (2012). https://doi.org/10.1038/nphoton.2012.150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.150

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing