Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards high-power mid-infrared emission from a fibre laser

Fibre lasers in the mid-infrared regime are useful for a diverse range of fields, including chemical and biomedical sensing, military applications and materials processing. This Review summarizes the different rare-earth cations and host materials used in mid-infrared fibre laser technology, and discusses the future applications and challenges for the field.

Abstract

The diverse output pulsewidths, linewidths and polarization states of fibre lasers provide both high efficiency and high output power in a small, low-maintenance format that is ideal for applications throughout research, defence and industry. New directions are constantly being pursued to exploit the capabilities of this technology. One such direction involves extending the emission wavelength further into the infrared, which will benefit numerous existing and future applications. Many exciting advances have been demonstrated and many challenges remain, the most significant of which are summarized in this Review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cross-section of a typical rare-earth-doped double-clad fibre for use in a fibre laser.
Figure 2: Output power from published demonstrations of infrared fibre lasers as a function of the emitted wavelength.
Figure 3: Laser transitions of rare-earth cations that produce emission wavelengths longer than 1.5 μm.
Figure 4: Fluorescence spectra of the rare-earth cation laser transitions used in fibre lasers emitting at wavelengths greater than 1.5 μm.
Figure 5: Energy-transfer processes between neighbouring cations relevant to the functioning of Tm3+ and Er3+ fibre lasers.

Similar content being viewed by others

References

  1. Snitzer, E. et al. Double clad, offset core Nd fiber laser in Optical Fiber Sensors, Vol. 2, paper PD5 of OSA Technical Digest Series (OSA, 1988).

    Google Scholar 

  2. Zenteno, L. High-power double clad fiber lasers. J. Lightwave Technol. 11, 1435–1446 (1993).

    ADS  Google Scholar 

  3. Jeong, Y., Sahu, J. K., Payne, D. N. & Nilsson, J. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express 12, 6088–6092 (2004).

    ADS  Google Scholar 

  4. Poole, S. B., Payne, D. N. & Fermann M. E. Fabrication of low-loss optical fibers containing rare earth ions. Electron. Lett. 21, 737–738 (1985).

    ADS  Google Scholar 

  5. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    ADS  Google Scholar 

  6. Vurgaftman, I. & Meyer, J. R. Analysis of limitations to wallplug efficiency and output power for quantum cascade lasers. J. Appl. Phys. 99, 123108 (2006).

    ADS  Google Scholar 

  7. Deloach, L. D. et al. Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media. IEEE J. Quant. Electron. 32, 885–895 (1996).

    ADS  Google Scholar 

  8. Sanghera, J. et al. Ceramic laser materials. Materials 5, 258–277 (2012).

    ADS  Google Scholar 

  9. http://www.ipgphotonics.com/.

  10. Sorokin, E., Naumov, S. & Sorokina, I. T. Ultrabroadband infrared solid-state lasers. IEEE J. Sel. Top. Quant. Electron. 11, 690–712 (2005).

    ADS  Google Scholar 

  11. Garbuzov, D. Z. et al. 2.3–2.7 μm room temperature CW operation of InGaAsSb–AlGaAsSb broad waveguide SCH-QW diode lasers. IEEE Photon. Tech. Lett. 11, 794–796 (1999).

    ADS  Google Scholar 

  12. Vodopyanov, K. L. Mid-infrared optical parametric generator with extra-wide (3–19 μm) tunability: applications for spectroscopy of two dimensional electrons in quantum wells. J. Opt. Soc. Am. B 16, 1579–1586 (1999).

    ADS  Google Scholar 

  13. Shen, Y. et al. PPMgLN based high power optical parametric oscillator pumped by Yb3+-doped fiber amplifier incorporating active pulse shaping. IEEE J. Sel. Top. Quant. Electron. 15, 385–392 (2009).

    ADS  Google Scholar 

  14. Pask, H. M. et al. Ytterbium-doped silica fiber lasers — versatile sources for the 1–12 μm region. IEEE J. Sel. Top. Quant. Electron. 1, 2–13 (1995).

    ADS  Google Scholar 

  15. Offerhaus, H. L. et al. High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber. Opt. Lett. 23, 1683–1685 (1998).

    ADS  Google Scholar 

  16. Knight, J. C. et al. Large mode area photonic crystal fibre. Electron. Lett. 34, 1347–1348 (1998).

    Google Scholar 

  17. Rottwitt, K. et al. Scaling of the Raman gain coefficient: applications to germanosilicate fibers. J. Lightwave Technol. 21, 1652–1662 (2003).

    ADS  Google Scholar 

  18. Koponen, J. J., Söderlund, M. J., Hoffman, H. J. & Tammela, S. K. T. Measuring photodarkening from single-mode ytterbium doped silica fibers. Opt. Express 14, 11539–11544 (2006).

    ADS  Google Scholar 

  19. Jetschke, S., Unger, S., Röpke, U. & Kirchhof, J. Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power. Opt. Express 15, 14838–14843 (2007).

    ADS  Google Scholar 

  20. Fomin, V. et al. 10 kW single-mode fiber laser, presented at the 5th International Symposium on High-Power Fiber Lasers and Their Applications (2010).

  21. Jeong, Y. et al. Erbium:ytterbium codoped large-core fiber laser with 297 W continuous-wave output power. IEEE J. Sel. Top. Quant. Electron. 13, 573–579 (2007).

    ADS  Google Scholar 

  22. Ehrenreich, T. et al. 1 kW, all-glass Tm:fiber laser. SPIE Photonics West 2010: LASE, Fibre Lasers VII: Technology, Systems and Applications, Conference 7850 (2010).

  23. Hemming, A. V. et al. Development of resonantly cladding-pumped holmium-doped fibre lasers. Proc. SPIE 8237, 82371J (2012).

    Google Scholar 

  24. Tokita, S. et al. Liquid-cooled 24 W mid-infrared Er:ZBLAN fiber laser. Opt. Lett. 34, 3062–3064 (2009).

    ADS  Google Scholar 

  25. Jackson, S. D. Single-transverse-mode 2.5-W holmium-doped fluoride fiber laser operating at 2.86 μm. Opt. Lett. 29, 334–336 (2004).

    ADS  Google Scholar 

  26. Li, J., Hudson, D. D. & Jackson S. D. High-power diode-pumped fiber laser operating at 3 μm. Opt. Lett. 36, 3642–3644 (2011).

    ADS  Google Scholar 

  27. Carbonnier, C., Többen, H., Unrau, U. B. Room temperature CW fibre laser at 3.22 μm. Electron. Lett. 34, 893–894 (1998).

    Google Scholar 

  28. Tobben, H. Room temperature CW fibre laser at 3.5 μm in Er3+-doped ZBLAN glass. Electron. Lett. 28, 1361–1363 (1992).

    ADS  Google Scholar 

  29. Schneider, J., Carbonnier, C. & Unrau, U. B. Characterization of a Ho3+-doped fluoride fiber laser with a 3.9 μm emission wavelength. Appl. Opt. 36, 8595–8600 (1997).

    ADS  Google Scholar 

  30. Brown, D. C. & Hoffman, H. J. Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers. IEEE J. Quant. Electron. 37, 207–217 (2001).

    ADS  Google Scholar 

  31. Esterowitz, L., Eckardt, R. C., Allen, R. E. Long-wavelength stimulated-emission via cascade laser action in Ho-YLF. Appl. Phys. Lett. 35, 236–239 (1979).

    ADS  Google Scholar 

  32. International Standard ISO 20473 “Optics and Photonics — Spectral bands” (2007).

  33. Eichhorn, M. & Jackson, S. D. Comparative study of continuous wave Tm3+-doped silica and fluoride fiber lasers. Appl. Phys. B 90, 35–41 (2008).

    ADS  Google Scholar 

  34. Jackson, S. D. et al. High-power 83 W holmium-doped silica fiber laser operating with high beam quality. Opt. Lett. 32, 241–243 (2007).

    ADS  Google Scholar 

  35. El-Agmy, R. M. & Al-Hosiny, N. M. 2. 31 μm laser under up-conversion pumping at 1.064 μm in Tm3+:ZBLAN fibre lasers. Electron. Lett. 46, 936–937 (2010).

    Google Scholar 

  36. Jackson, S. D. Continuous wave 2.9 μm dysprosium-doped fluoride fiber laser. Appl. Phys. Lett. 83, 1316–1318 (2003).

    ADS  Google Scholar 

  37. Greaves, G. N. EXAFS and the structure of glass. J. Non-cryst. Solids 71, 203–217 (1985).

    ADS  Google Scholar 

  38. Caro, P., Beaury, O. & Antic, E. Nephelauxetic effect for 4fN configurations in solid-state. J. Phys.-Paris 37, 671–676 (1976).

    Google Scholar 

  39. Hanna, D. C., Percival, R. M., Smart, R. G. & Tropper A. C. Efficient and tunable operation of a Tm-doped fibre laser. Opt. Commun. 75, 283–286 (1990).

    ADS  Google Scholar 

  40. Jackson, S. D. & King, T. A. High-power diode-cladding-pumped Tm-doped silica fiber laser. Opt. Lett. 23, 1462–1464 (1998).

    ADS  Google Scholar 

  41. Hayward, R. A. et al. Efficient cladding-pumped Tm-doped silica fibre laser with high power singlemode output at 2 μm. Electron. Lett. 36, 711–712 (2000).

    Google Scholar 

  42. Moulton, P. F. et al. Tm-doped fiber lasers: fundamentals and power scaling. IEEE J. Sel. Top. Quant. Electron. 15, 85–92 (2009).

    ADS  Google Scholar 

  43. Clarkson, W. A. et al. High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm. Opt. Lett. 27, 1989–1991 (2002).

    ADS  Google Scholar 

  44. Jackson, S. D. Cross relaxation and energy transfer upconversion processes relevant to the functioning of 2 μm Tm3+-doped silica fibre lasers. Opt. Commun. 230, 197–203 (2004).

    ADS  Google Scholar 

  45. Jackson, S. D. Midinfrared holmium fiber lasers. IEEE J. Quant. Electron. 42, 187–191 (2006).

    ADS  Google Scholar 

  46. Oh, K. et al. Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser. Opt. Lett. 19, 278–280 (1994).

    ADS  Google Scholar 

  47. Jackson, S. D., Bugge, F. & Erbert, G. Directly diode-pumped holmium fiber lasers. Opt. Lett. 32, 2496–2498 (2007).

    ADS  Google Scholar 

  48. Tokita, S. et al. Stable 10 W Er:ZBLAN fiber laser operating at 2.71–2.88 μm. Opt. Lett. 35, 3943–3945 (2010).

    ADS  Google Scholar 

  49. Faucher, D. et al. 20 W passively cooled single-mode all-fiber laser at 2.8 μm. Opt. Lett. 36, 1104–1106 (2011).

    ADS  Google Scholar 

  50. Bernier, M. et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm. Opt. Lett. 32, 454–456 (2007).

    ADS  Google Scholar 

  51. Faucher, D., Bernier, M., Caron, N. & Vallee, R. Erbium-doped all-fiber laser at 2.94 μm. Opt. Lett. 34, 3313–3315 (2009).

    ADS  Google Scholar 

  52. Gorjan, M., Marincek, M. & Copic, M. Role of interionic processes in the efficiency and operation of erbium-doped fluoride fiber lasers. IEEE J. Quant. Electron. 47, 262–273 (2011).

    ADS  Google Scholar 

  53. Schneider, J. Mid-infrared fluoride fiber lasers in multiple cascade operation. IEEE Photon. Tech. Lett. 7, 354–356 (1995).

    ADS  Google Scholar 

  54. Pollnau, M. et al. Three-transition cascade erbium laser at 1.7,2.7, and 6 μm. Opt. Lett. 22, 612–614 (1997).

    ADS  Google Scholar 

  55. Jackson, S. D. High-power erbium cascade fibre laser. Electron. Lett. 45, 830–832 (2009).

    Google Scholar 

  56. Li, J. & Jackson, S. D. Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers. IEEE J. Quant. Electron. 48, 454–464 (2012).

    ADS  Google Scholar 

  57. Wetenkamp, L., West, G. F. & Tobben. H. Optical properties of rare earth-doped ZBLAN glasses. J. Non-cryst. Solids 140, 35–40 (1992).

    ADS  Google Scholar 

  58. Hruby, A. Evaluation of glass-forming tendency by means of DTA. Czech J. Phys. B22, 1187–1193 (1972).

    ADS  Google Scholar 

  59. Tünnermann, A. et al. The renaissance and bright future of fibre lasers. J. Phys. B 38, S681–S693 (2005).

    Google Scholar 

  60. Layne, C. B., Lowdermilk, W. H. & Weber, M. J. Multiphonon relaxation of rare-earth ions in oxide glasses. Phys. Rev. B 16, 10–20 (1977).

    ADS  Google Scholar 

  61. Saito, K. et al. Limit of the Rayleigh scattering loss in silica fiber. Appl. Phys. Lett. 83, 5175–5177 (2003).

    ADS  Google Scholar 

  62. Arai, K. et al. Aluminium or phosphorous co-doping effects on the fluorescence properties of neodymium-doped silica glass. J. Appl. Phys. 59, 3430–3436 (1986).

    ADS  Google Scholar 

  63. Sacks, Z. S., Schiffer, Z. & David, D. Long wavelength operation of double-clad Tm:silica fiber lasers. Proc. SPIE 6453, 645320 (2007).

    Google Scholar 

  64. Zhu, X. & Peyghambarian, N. High-power ZBLAN glass fiber lasers: review and prospect. Adv. Optoelectron. 2010, 501956 (2010).

    Google Scholar 

  65. Ohsawa, K., Shibata, T., Nakamura, K. & Yoshida, S. Fluorozirconate glasses for infrared transmitting optical fibers. Paper 1.1, Technical Digest, 7th European Conference on Optical Communication (1981).

  66. Mitachi, S., Miyashita, T. & Kanamori, T. Fluoride-glass cladded optical fibers for mid-infra-red ray transmission. Electron. Lett. 17, 591–592 (1981).

    ADS  Google Scholar 

  67. Tran, D. C., Fisher, C. F. & Sigel, G. H. Jr. Fluoride glass performs prepared by a rotation casting process. Electron. Lett. 18, 657–658 (1982).

    Google Scholar 

  68. Carter, S. F. et al. Low loss fluoride fibre by reduced pressure casting. Electron. Lett. 26, 2115–2117 (1990).

    Google Scholar 

  69. Almeida, R. M. & Mackenzie, J. D. Vibrational spectra and structure of fluorozirconate glasses. J. Chem. Phys. 74, 5954–5961 (1981).

    ADS  Google Scholar 

  70. Day, C. R. et al. Fluoride fibres for optical transmission. Opt. Quant. Electron. 22, 259–277 (1990).

    Google Scholar 

  71. Zhu, X. & Jain, R. 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser. Opt. Lett. 32, 26–28 (2007).

    ADS  Google Scholar 

  72. Fortin, V., Bernier, M., Carrier, J. & Vallée, R. Fluoride glass Raman fiber laser at 2185 nm. Opt. Lett. 36, 4152–4154 (2011).

    ADS  Google Scholar 

  73. Wang, J., et al. Fabrication and optical-properties of lead-germanate glasses and a new class of optical fiber lasers doped with Tm3+, J. Appl. Phys. 73, 8066–8075 (1993).

    ADS  Google Scholar 

  74. Lincoln J. R. et al. New class of fibre laser based on lead-germanate glass. Electron. Lett. 28, 1021–1022 (1992).

    ADS  Google Scholar 

  75. Wu, J., Yao, Z., Zong, J. & Jiang, S. Highly efficient high-power thulium-doped germanate glass fiber laser. Opt. Lett. 32, 638–640 (2007).

    ADS  Google Scholar 

  76. Geng, J., Wu, J., Jiang, S. & Yu, J. Efficient operation of diode-pumped single-frequency thulium-doped fiber lasers near 2 μm. Opt. Lett. 32, 355–357 (2007).

    ADS  Google Scholar 

  77. Mori, A., Ohishi, Y. & Sudo, S. Erbium-doped tellurite glass fibre laser and amplifier. Electron. Lett. 33, 863–864 (1997).

    Google Scholar 

  78. Gomes, L. et al. Energy level decay and excited state absorption processes in erbium-doped tellurite glass. J. Appl. Phys. 110, 083111 (2011).

    ADS  Google Scholar 

  79. Eggleton, B. J., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nature Photon. 5, 141–148 (2011).

    ADS  Google Scholar 

  80. Julien, C. et al. Raman and infrared spectroscopic studies of Ge–Ga–Ag sulfide glasses. Mat. Sci. Eng. B22, 191–200 (1994).

    Google Scholar 

  81. Weszka, J. et al. Raman scattering in In2Se3 and InSe2 amorphous films. J. Non-cryst. Solids 265, 98–104 (2000).

    ADS  Google Scholar 

  82. Uemura, O., Hayasaka, N., Tokairin, S. & Usuki, T. Local atomic arrangement in Ge–Te and Ge–S–Te glasses. J. Non-cryst. Solids 205, 189–193 (1996).

    ADS  Google Scholar 

  83. Maurugeon, S. et al. Telluride glass step index fiber for the far infrared. J. Lightwave Technol. 28, 3358–3363 (2010).

    ADS  Google Scholar 

  84. Schweizer, T., Hewak, D. W., Samson, B. N., Payne, D. N. Spectroscopic data of the 1.8-, 2.9- and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass. Opt. Lett. 21, 1594–1596 (1996).

    ADS  Google Scholar 

  85. Schweizer, T. et al. Rare-earth doped chalcogenide glass laser. Electron. Lett. 32, 666–667 (1996).

    Google Scholar 

  86. Brady, D. J. & Schweizer, T. Minimum loss predictions and measurements in gallium lanthanum sulfide based glasses and fibers. J. Non-cryst. Solids 242, 92–98 (1998).

    ADS  Google Scholar 

  87. Seddon, A. B. et al. Progress in rare-earth-doped mid-infrared fiber lasers. Opt. Express 18, 26704–26719 (2010).

    ADS  Google Scholar 

  88. Aggarwal, I. D. & Sanghera, J. S. Development and applications of chalcogenide glass optical fibers at NRL. J. Optoelectron. Adv. Mat. 4, 665–678 (2002).

    Google Scholar 

  89. Nelson, L. E., Ippen, E. P. & Haus, H. A. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser. Appl. Phys. Lett. 67, 19–21 (1995).

    ADS  Google Scholar 

  90. Sharp, R. C., Spock, D. E., Pan, N. & Elliot, J. 190-fs passively mode-locked thulium fiber laser with a low threshold. Opt. Lett. 21, 881–883 (1996).

    ADS  Google Scholar 

  91. Solodyankn, M. A. et al. Mode-locked 1.93 μm thulium laser with a carbon nanotube absorber. Opt. Lett. 33, 1336–1338 (2008).

    ADS  Google Scholar 

  92. Imeshev, I. & Fermann, M. E. 230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber. Opt. Express 13, 7424–7431 (2005).

    ADS  Google Scholar 

  93. Engelbrecht, M., Haxsen, F., Ruehl, A., Wandt, D. & Kracht, D. Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ. Opt. Lett. 33, 690–692 (2008).

    ADS  Google Scholar 

  94. Haxsen, F. et al. Pulse energy of 151-nJ from ultrafast thulium-doped chirped-pulse fiber amplifier. Opt. Lett. 35, 2991–2993 (2010).

    ADS  Google Scholar 

  95. El-Sherif, A. F. & King, T. A. High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 μm. Opt. Lett. 28, 22–24 (2003).

    ADS  Google Scholar 

  96. Eichhorn, M. & Jackson, S. D. High-pulse-energy actively Q-switched Tm3+-doped silica 2 μm fiber laser pumped at 792 nm. Opt. Lett. 32, 2780–2782 (2007).

    ADS  Google Scholar 

  97. Jiang, M. & Tayebati, P. Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser. Opt. Lett. 32, 1797–1799 (2007).

    ADS  Google Scholar 

  98. Ding, J. W. et al. A monolithic thulium doped single mode fiber laser with 1.5 ns pulsewidth and 8 kW peak power. Proc. SPIE 7914, 79140X (2011).

    Google Scholar 

  99. Tokita, S. et al. 12 W Q-switched Er:ZBLAN fiber laser at 2.8 μm. Opt. Lett. 36, 2812–2814 (2011).

    ADS  Google Scholar 

  100. Gorjan, M., Petkovšek, R., Marinček, M. & Čopič, M. High-power pulsed diode-pumped Er:ZBLAN fiber laser. Opt. Lett. 36, 1923–1925 (2011).

    ADS  Google Scholar 

  101. Hu, T., Hudson, D. D. & Jackson, S. D. Actively Q-switched 2.9 μm Ho3+Pr3+-doped fluoride fiber laser. Opt. Lett. 37, 2145–2147 (2012).

    ADS  Google Scholar 

  102. Li, J., Hu, T. & Jackson, S. D. Q-switched fiber cascade laser. Opt. Lett. 37, 2208–2210 (2012).

    ADS  Google Scholar 

  103. Eichhorn, M. High-peak-power Tm-doped double-clad fluoride fiber amplifier. Opt. Lett. 30, 3329–3331 (2005).

    ADS  Google Scholar 

  104. Hale, G. M. & Querry, M. R. Optical-constants of water in 200-nm to 200-μm wavelength region. Appl. Opt. 12, 555–563 (1973).

    ADS  Google Scholar 

  105. Fried, N. M. & Murray, K. E. New technologies in enodurology — high power thulium fiber laser ablation of urinary tissues at 1.94 μm. J. Endourol. 19, 25–31 (2005).

    Google Scholar 

  106. Bach, T., Herrman, T. R., Cellarius, C. & Gross, A. J. Bladder neck incision using a 70 W, 2 micron continuous wave laser (RevoLix). World J. Urol. 25, 263–267 (2007).

    Google Scholar 

  107. Fried, N. M. High-power laser vaporization of the canine prostrate using a 110 W thulium fiber laser at 1.91 μm. Las. Surg. Med. 36, 52–56 (2005).

    Google Scholar 

  108. Xia, S. J. et al. Thulium fiber laser versus standard transurethral resection of the prostrate: a randomized prospective trial. Eur. Urol. 53, 382–390 (2008).

    Google Scholar 

  109. Kourambas, J., Delvecchio, F. C. & Preminger, G. M. Low-power holmium laser for the management of urinary tract calculi, strictures and tumors. J. Endourol. 15, 529–532 (2001).

    Google Scholar 

  110. Bui, M. H. et al. Less smoke and minimal tissue carbonization using a thulium laser for laparoscopic partial nephrectomy without hilar clamping in a porcine model. J. Endourol. 21, 1107–1111 (2007).

    Google Scholar 

  111. Bilici, T. et al. Development of a thulium (Tm:YAP) laser system for brain tissue ablation. Las. Med. Sci. 26, 699–706 (2011).

    Google Scholar 

  112. Chen, B. et al. Histological and modeling study of skin thermal injury to 2 μm laser radiation. Las. Surg. Med. 40, 358–370 (2008).

    Google Scholar 

  113. Zeitels, S. M. et al. Office-based and microlaryngeal applications of fiber-based thulium laser. Ann. Otol. Rhinol. Laryngol. 115, 891–896 (2006).

    Google Scholar 

  114. Burns, J. A. et al. Thermal damage during thulium laser dissection of laryngeal soft tissue is reduced with air cooling: ex vivo calf model study. Ann. Otol. Rhinol. Laryngol. 116, 853–857 (2007).

    Google Scholar 

  115. Pierce, M. C., Jackson S. D., Dickinson, M. R. & King T. A. Laser-tissue interaction with a high-power 2 μm fiber laser: preliminary studies with soft tissue. Las. Surg. Med. 25, 407–413 (1999).

    Google Scholar 

  116. Hazey, J. W. et al. Natural-orifice transgastric endoscopic peritoneoscopy in humans: initial clinical trial. Surg. Endosc. 22, 16–20 (2008).

    Google Scholar 

  117. Pierce, M. C. et al. Laser-tissue interaction with a continuous wave 3 μm fiber laser: preliminary studies with soft tissue. Las. Surg. Med. 26, 491–495 (2000).

    Google Scholar 

  118. Anderson R. R. et al. Selective photothermolysis of lipid-rich tissues: a free electron study. Las. Surg. Med. 38, 913–919 (2006).

    Google Scholar 

  119. Peavy, G. M., Reinisch, L., Payne, J. T. & Venugopalan, V. Comparison of cortical bone ablations by using infrared laser wavelengths 2.9 to 9.2 μm. Las. Surg. Med. 26, 421–434 (1999).

    Google Scholar 

  120. Edwards, G. et al. Tissue ablation by a free-electron laser tuned to the amide II band. Nature 371, 416–419 (1994).

    ADS  Google Scholar 

  121. Lippert, E. et al. Midinfrared laser source with high power and beam quality. Appl. Opt. 45, 3839–3845 (2006).

    ADS  Google Scholar 

  122. Kieleck, C. et al. High-efficiency 20–50 kHz mid-infrared orientation-patterned GaAs optical parametric oscillator pumped by a 2 μm holmium laser. Opt. Lett. 34, 262–264 (2009).

    ADS  Google Scholar 

  123. Creeden, D. et al. Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2 μm Tm-doped fiber laser. Opt. Lett. 33, 315–317 (2008).

    ADS  Google Scholar 

  124. Kulkarni, O. P. et al. Supercontinuum generation from 1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier. J. Opt. Soc. Am. B 28, 2486–2498 (2011).

    ADS  Google Scholar 

  125. Phillips, C. R. et al. Self-referenced frequency comb from a Tm-fiber amplifier via PPLN waveguide supercontinuum generation. Paper PDPA5 in CLEO:2011 — Laser Applications to Photonic Applications, OSA Technical Digest (OSA, 2011).

    Google Scholar 

  126. Zhang, J., Fromzel, V. & Dubinskii, M. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency. Opt. Express 19, 5574–5578 (2011).

    ADS  Google Scholar 

  127. Meleshkevich, M. et al. 415W single-mode CW thulium fiber laser in all-fiber format. Paper CP2_3 in CLEO/Europe and IQEC 2007 Conference Digest (OSA, 2007).

  128. Modsching, N. et al. Lasing in thulium-doped polarizing photonic crystal fiber. Opt. Lett. 36, 3873–3875 (2011).

    ADS  Google Scholar 

  129. Fan, T. Y. Laser beam combining for high-power, high-radiance sources. IEEE J. Sel. Top. Quant. Electron. 11, 567–577 (2005).

    ADS  Google Scholar 

  130. Shaw, L. B. et al. Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber. IEEE J. Quant. Electron. 48, 1127–1137 (2001).

    ADS  Google Scholar 

  131. Nagli, L., Gayer, O. & Katzir, A. Middle-infrared luminescence of praseodymium ions in silver halide crystals and fibers. Opt. Lett. 30, 1831–1833 (2005).

    ADS  Google Scholar 

  132. Rave, E. et al. Silver halide photonic crystal fibers for the middle infrared. Appl. Opt. 43, 2236–2241 (2004).

    ADS  Google Scholar 

  133. Jones, A. M. et al. Mid-infrared gas filled photonic crystal fiber laser based on population inversion. Opt. Express 19, 2309–2316 (2011).

    ADS  Google Scholar 

Download references

Acknowledgements

The author acknowledges financial support from the Australian Research Council through receipt of a Queen Elizabeth II Fellowship and, the Discovery Projects and Centre of Excellence funding schemes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart D. Jackson.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, S. Towards high-power mid-infrared emission from a fibre laser. Nature Photon 6, 423–431 (2012). https://doi.org/10.1038/nphoton.2012.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.149

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing