Abstract
Phase-space optics allows the simultaneous visualization of both space (x) and spatial frequency (k) information. Previous experiments have focused mainly on coherent beams, which are fully described by a two-dimensional complex field (amplitude and phase). In contrast, partially coherent beams inherently have more degrees of freedom and require a four-dimensional description. This description is particularly important for propagation, in which coherence properties determine the intensity evolution. Despite this, most measurements in linear optics, and all those in nonlinear optics, have recorded only the intensity and power spectrum projections (x-space or k-space only). Measuring local coherence remains a challenging problem, especially in the full four-dimensional phase space. In turn, the recording difficulty has limited efforts to generate arbitrary, spatially varying patterns of coherence, despite their usefulness for imaging, illumination and display. We remedy both problems here, using spatial light modulators to create beams with locally varying spatial coherence and to measure their phase-space properties.
Access options
Subscribe to Journal
Get full journal access for 1 year
$169.00
only $14.08 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.






References
- 1
Barsi, C., Wan, W. & Fleischer, J. W. Imaging through nonlinear media using digital holography. Nature Photon. 3, 211–215 (2009).
- 2
Tsang, M., Psaltis, D. & Omenetto, F. Reverse propagation of femtosecond pulses in optical fibers. Opt. Lett. 28, 1873–1875 (2003).
- 3
Testorf, M., Hennelly, B. & Ojeda-Castaneda, J. Phase-Space Optics (McGraw-Hill, 2009).
- 4
Hall, B., Lisak, M., Anderson, D., Fedele, R. & Semenov, V. Statistical theory for incoherent light propagation in nonlinear media. Phys. Rev. E 65, 035602 (2002).
- 5
Walther, A. Radiometry and coherence. J. Opt. Soc. Am. 58, 1256–1259 (1968).
- 6
Bastiaans, M. Applications of the Wigner distribution function to partially coherent light beams. Proc. SPIE 3729, 114–128 (1999).
- 7
Brenner, K. & Ojeda-Castaneda, J. Ambiguity function and Wigner distribution function applied to partially coherent imagery. J. Mod. Opt. 31, 213–223 (1984).
- 8
Alonso, M. Wigner functions in optics: describing beams as ray bundles and pulses as particle ensembles. Adv. Opt. Photon. 3, 272–365 (2011).
- 9
Dragoman, D. Phase-space interferences as the source of negative values of the Wigner distribution function. J. Opt. Soc. Am. A 17, 2481–2485 (2000).
- 10
Wax, A. & Thomas, J. E. Optical heterodyne imaging and Wigner phase space distributions. Opt. Lett. 21, 1427–1429 (1996).
- 11
Marks, D., Stack, R., Brady, D., Munson, D. & Brady, R. Visible cone-beam tomography with a lensless interferometric camera. Science 284, 2164–2166 (1999).
- 12
Marks, D., Stack, R. & Brady, D. Astigmatic coherence sensor for digital imaging. Opt. Lett. 25, 1726–1728 (2000).
- 13
Raymer, M., Beck, M. & McAlister, D. Complex wave-field reconstruction using phase-space tomography. Phys. Rev. Lett. 72, 1137–1140 (1994).
- 14
Cámara, A., Alieva, T., Rodrigo, J. & Calvo, M. Phase-space tomography with a programmable Radon–Wigner display. Opt. Lett. 36, 2441–2443 (2011).
- 15
Tran, C. et al. X-ray imaging: a generalized approach using phase-space tomography. J. Opt. Soc. Am. A 22, 1691–1700 (2005).
- 16
Flewett, S., Quiney, H., Tran, C. & Nugent, K. Extracting coherent modes from partially coherent wavefields. Opt. Lett. 34, 2198–2200 (2009).
- 17
Schafer, B. & Mann, K. Determination of beam parameters and coherence properties of laser radiation by use of an extended Hartmann–Shack wave-front sensor. Appl. Opt. 41, 2809–2817 (2002).
- 18
Lindlein, N., Pfund, J. & Schwider, J. Algorithm for expanding the dynamic range of a Shack–Hartmann sensor by using a spatial light modulator array. Opt. Eng. 40, 837–840 (2001).
- 19
Bartelt, H., Brenner, K. & Lohmann, A. The Wigner distribution function and its optical production. Opt. Commun. 32, 32–38 (1980).
- 20
Brenner, K. H. & Lohmann, A. W. Wigner distribution function display of complex 1D signals. Opt. Commun. 42, 310–314 (1982).
- 21
Bastiaans, M. Uncertainty principle and informational entropy for partially coherent light. J. Opt. Soc. Am. A 3, 1243–1246 (1986).
- 22
Accardi, A. & Wornell, G. Quasi light fields: extending the light field to coherent radiation. J. Opt. Soc. Am. A 26, 2055–2066 (2009).
- 23
Christodoulides, D., Eugenieva, E., Coskun, T., Segev, M. & Mitchell, M. Equivalence of three approaches describing partially incoherent wave propagation in inertial nonlinear media. Phys. Rev. E 63, 035601 (2001).
- 24
Shkunov, V. & Anderson, D. Radiation transfer model of self-trapping spatially incoherent radiation by nonlinear media. Phys. Rev. Lett. 81, 2683–2686 (1998).
- 25
Bastiaans, M. The Wigner distribution function applied to optical signals and systems. Opt. Commun. 25, 26–30 (1978).
- 26
Christodoulides, D., Coskun, T., Mitchell, M. & Segev, M. Theory of incoherent self-focusing in biased photorefractive media. Phys. Rev. Lett. 78, 646–649 (1997).
- 27
Dylov, D. V., Waller, L. & Fleischer, J. W. Nonlinear restoration of diffused images via seeded instability. IEEE J. Sel. Top. Quant. Electron. 916–925 (2012).
- 28
Mitchell, M., Segev, M., Coskun, T. & Christodoulides, D. Theory of self-trapped spatially incoherent light beams. Phys. Rev. Lett. 79, 4990–4993 (1997).
- 29
Mitchell, M., Chen, Z., Shih, M. & Segev, M. Self-trapping of partially spatially incoherent light. Phys. Rev. Lett. 77, 490–493 (1996).
- 30
Soljacic, M., Segev, M., Coskun, T., Christodoulides, D. & Vishwanath, A. Modulation instability of incoherent beams in noninstantaneous nonlinear media. Phys. Rev. Lett. 84, 467–470 (2000).
- 31
Kip, D., Soljacic, M., Segev, M., Eugenieva, E. & Christodoulides, D. Modulation instability and pattern formation in spatially incoherent light beams. Science 290, 495–498 (2000).
- 32
Sheppard, C. J. R. Defocused transfer function for a partially coherent microscope and application to phase retrieval. J. Opt. Soc. Am. A 21, 828–831 (2004).
- 33
Shirai, T. & Wolf, E. Coherence and polarization of electromagnetic beams modulated by random phase screens and their changes on propagation in free space. J. Opt. Soc. Am. A 21, 1907–1916 (2004).
- 34
Ostrovsky, A. & Hernández García, E. Modulation of spatial coherence of optical field by means of liquid crystal light modulator. Rev. Mex. Fis. 51, 442–446 (2005).
- 35
Funamizu, H. & Uozumi, J. Generation of fractal speckles by means of a spatial light modulator. Opt. Express 15, 7415–7422 (2007).
- 36
Betancur, R. & Castañeda, R. Spatial coherence modulation. J. Opt. Soc. Am. A 26, 147–155 (2009).
- 37
Takeda, M., Wang, W., Duan, Z. & Miyamoto, Y. Coherence holography. Opt. Express 13, 9629–9635 (2005).
- 38
Mendlovic, D., Shabtay, G. & Lohmann, A. Synthesis of spatial coherence. Opt. Lett. 24, 361–363 (1999).
- 39
Erden, M., Ozaktas, H. & Mendlovic, D. Synthesis of mutual intensity distributions using the fractional Fourier transform. Opt. Commun. 125, 288–301 (1996).
- 40
Zalevsky, Z., Medlovic, D. & Ozaktas, H. Energetic efficient synthesis of general mutual intensity distribution. J. Opt. A 2, 83–87 (2000).
- 41
Santis, P., Gori, F., Santarsiero, M. & Guattari, G. Sources with spatially sinusoidal modes. Opt. Commun. 82, 123–129 (1991).
- 42
Lohmann, A., Shabtay, G. & Mendlovic, D. Synthesis of hybrid spatial coherence. Appl. Opt. 38, 4279–4280 (1999).
- 43
Lajunen, H. & Saastamoinen, T. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt. Lett. 36, 4104–4106 (2011).
- 44
Santis, P., Gori, F., Guattari, G. & Palma, C. Synthesis of partially coherent fields. J. Opt. Soc. Am. A 3, 1258–1262 (1986).
- 45
Turunen, J., Vasara, A. & Friberg, A. Propagation invariance and self-imaging in variable-coherence optics. J. Opt. Soc. Am. A 8, 282–289 (1991).
- 46
Gbur, G. & Visser, T. D. Coherence vortices in partially coherent beams. Opt. Commun. 222, 117–125 (2003).
- 47
Wang, W., Duan, Z., Hanson, S. G., Miyamoto, Y. & Takeda, M. Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function. Phys. Rev. Lett. 96, 073902 (2006).
- 48
Anderson, D., Helczynski-Wolf, L., Lisak, M. & Semenov, V. Features of modulational instability of partially coherent light: importance of the incoherence spectrum. Phys. Rev. E 69, 025601 (2004).
- 49
Dylov, D. V. & Fleischer, J. W. Observation of all-optical bump-on-tail instability. Phys. Rev. Lett. 100, 103903 (2008).
- 50
Dylov, D. V. & Fleischer, J. W. Nonlinear self-filtering of noisy images via dynamical stochastic resonance. Nature Photon. 4, 323–328 (2010).
Acknowledgements
The authors thank L. Tian and S. Muenzel for valuable discussions. This work was supported by the Department of Energy and the Air Force Office of Scientific Research.
Author information
Affiliations
Contributions
L.W. and J.W.F. conceived and designed the experiments. L.W. performed the experiments and simulations. G.S. helped with the set-up of the experiments. All authors analysed the data and contributed to the preparation of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary information (PDF 595 kb)
Rights and permissions
About this article
Cite this article
Waller, L., Situ, G. & Fleischer, J. Phase-space measurement and coherence synthesis of optical beams. Nature Photon 6, 474–479 (2012). https://doi.org/10.1038/nphoton.2012.144
Received:
Accepted:
Published:
Issue Date:
Further reading
-
Coded-aperture broadband light field imaging using digital micromirror devices
Optica (2021)
-
Robust light beam diffractive shaping based on a kind of compact all-optical neural network
Optics Express (2021)
-
A survey of approaches for implementing optical neural networks
Optics & Laser Technology (2021)
-
High compression deep learning based single-pixel hyperspectral macroscopic fluorescence lifetime imaging in vivo
Biomedical Optics Express (2020)
-
Locating and Imaging through Scattering Medium in a Large Depth
Sensors (2020)