This Review discusses the emerging field of mid-infrared frequency comb generation, including technologies based on novel laser gain media, nonlinear frequency conversion and microresonators, as well as the applications of these combs in precision spectroscopy and direct frequency comb spectroscopy.
Abstract
Laser frequency combs are coherent light sources that emit a broad spectrum of discrete, evenly spaced narrow lines whose absolute frequency can be measured to within the accuracy of an atomic clock. Their development in the near-infrared and visible domains has revolutionized frequency metrology while also providing numerous unexpected opportunities in other fields such as astronomy and attosecond science. Researchers are now exploring how to extend frequency comb techniques to the mid-infrared spectral region. Versatile mid-infrared frequency comb generators based on novel laser gain media, nonlinear frequency conversion or microresonators promise to significantly expand the applications of frequency combs. In particular, novel approaches to molecular spectroscopy in the 'fingerprint region', with dramatically improved precision, sensitivity, recording time and/or spectral bandwidth may lead to new discoveries in the various fields relevant to molecular science.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Highly efficient octave-spanning long-wavelength infrared generation with a 74% quantum efficiency in a χ(2) waveguide
Nature Communications Open Access 06 November 2023
-
3D-patterned inverse-designed mid-infrared metaoptics
Nature Communications Open Access 13 May 2023
-
Mid-infrared cross-comb spectroscopy
Nature Communications Open Access 24 February 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).
Cundiff, S. T. & Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).
Ye, J. & Cundiff, S. T. (eds) Femtosecond Optical Frequency Comb: Principle, Operation and Applications (Springer, 2005).
Hall, J. L. Nobel Lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006).
Hänsch, T. W. Nobel Lecture: Passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).
Diddams, S. A. The evolving optical frequency comb. J. Opt. Soc. Am. B 27, B51–B62 (2010).
Page, R. H. et al. Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers. IEEE J. Quant. Electron. 33, 609–619 (1997).
Sorokina, I. T. Crystalline mid-infrared lasers. Top. Appl. Phys. 89, 255–349 (2003).
Sorokin, E., Naumov, S. & Sorokina, I. T. Ultrabroadband infrared solid-state lasers. IEEE J. Sel. Top. Quant. Electron. 11, 690–712 (2005).
Mirov, S. B. et al. Progress in mid-IR Cr2+ and Fe2+ doped II–VI materials and lasers Invited. Opt. Mater. Express 1, 898–910 (2011).
Sorokin, E., Sorokina, I. T., Mandon, J., Guelachvili, G. & Picqué, N. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser. Opt. Express 15, 16540–16545 (2007).
Cizmeciyan, M. N., Cankaya, H., Kurt, A. & Sennaroglu, A. Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm. Opt. Lett. 34, 3056–3058 (2009).
Slobodtchikov, E. & Moulton, P. Progress in ultrafast Cr:ZnSe lasers in Lasers, Sources, and Related Photonic Devices paper AW5A.4 (OSA, 2012).
Sorokin, E., Tolstik, N. & Sorokina, I. Kerr-lens mode-locked Cr:ZnS laser in Lasers, Sources, and Related Photonic Devices paper AW5A.5 (OSA, 2012).
Bernhardt, B. et al. Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers. Appl. Phys. B 100, 3–8 (2010).
Fedorov, V. V. et al. 3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures. IEEE J. Quant. Electron. 42, 907–917 (2006).
Frolov, M. P. et al. Laser radiation tunable within the range of 4.35–5.45 μm in a ZnTe crystal doped with Fe2+ ions. J. Russ. Laser. Res. 32, 528–536 (2011).
Kozlovsky, V. I. et al. Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm. Quantum Electron. 41, 1–3 (2011).
Pollnau, M. & Jackson, S. D. in Topics in Applied Physics Vol. 89 (eds Sorokina, I. & Vodopyanov, K.) 219–255 (Springer, 2003).
Nelson, L. E., Ippen, E. P. & Haus, H. A. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser. Appl. Phys. Lett. 67, 19–21 (1995).
Solodyankin, M. A. et al. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber. Opt. Lett. 33, 1336–1338 (2008).
Kieu, K. & Wise, F. W. Soliton thulium-doped fiber laser with carbon nanotube saturable absorber. IEEE Photon. Tech. Lett. 21, 128–130 (2009).
Haxsen, F., Wandt, D., Morgner, U., Neumann, J. & Kracht, D. Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion. Opt. Express 18, 18981–18988 (2010).
Wang, Q., Geng, J. H., Jiang, Z., Luo, T. & Jiang, S. B. Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm. IEEE Photon. Tech. Lett. 23, 682–684 (2011).
Phillips, C. R. et al. Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. Opt. Lett. 36, 3912–3914 (2011).
Adler, F. & Diddams, S. A. High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 μm wavelength region. Opt. Lett. 37, 1400–1402 (2012).
Coluccelli, N. et al. 1.6-W self-referenced frequency comb at 2.06 μm using a Ho:YLF multipass amplifier. Opt. Lett. 36, 2299–2301 (2011).
Hofstetter, D. & Faist, J. High performance quantum cascade lasers and their applications. Top. Appl. Phys. 89, 61–96 (2003).
Paiella, R. et al. Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities. Science 290, 1739–1742 (2000).
Wang, C. Y. et al. Mode-locked pulses from mid-infrared quantum cascade lasers. Opt. Express 17, 12929–12943 (2009).
Fischer, C. & Sigrist, M. W. Mid-IR difference frequency generation. Top. Appl. Phys. 89, 97–140 (2003).
Maddaloni, P., Malara, P., Gagliardi, G. & De Natale, P. Mid-infrared fibre-based optical comb. New J. Phys. 8, 262 (2006).
Baumann, E. et al. Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer. Phys. Rev. A 84, 062513 (2011).
Foreman, S. M., Jones, D. J. & Ye, J. Flexible and rapidly configurable femtosecond pulse generation in the mid-IR. Opt. Lett. 28, 370–372 (2003).
Foreman, S. M. et al. Demonstration of a HeNe/CH4-based optical molecular clock. Opt. Lett. 30, 570–572 (2005).
Erny, C. et al. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source. Opt. Lett. 32, 1138–1140 (2007).
Gubin, M. A. et al. Femtosecond fiber laser based methane optical clock. Appl. Phys. B 95, 661–666 (2009).
Sell, A., Scheu, R., Leitenstorfer, A. & Huber, R. Field-resolved detection of phase-locked infrared transients from a compact Er:fiber system tunable between 55 and 107 THz. Appl. Phys. Lett. 93, 251107 (2008).
Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).
Schliesser, A., Brehm, M., Keilmann, F. & van der Weide, D. W. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).
Gambetta, A., Ramponi, R. & Marangoni, M. Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. Opt. Lett. 33, 2671–2673 (2008).
Keilmann, F. & Amarie, S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. J. Infrared Millim. Te. 33, 479–484 (2012).
Ruehl, A. et al. Widely-tunable mid-IR frequency comb source based on difference frequency generation. Opt. Lett. 37, 2232–2234 (2012).
Ebrahimzadeh, M. in Topics in Applied Physics Vol. 89 (eds Sorokina, I. & Vodopyanov, K.) 179–218 (Springer, 2003).
Vodopyanov, K. in Topics in Applied Physics Vol. 89 (eds Sorokina, I. & Vodopyanov, K.) 141–178 (Springer, 2003).
Reid, D. T., Gale, B. J. S. & Sun, J. Frequency comb generation and carrier–envelope phase control in femtosecond optical parametric oscillators. Laser Phys. 18, 87–103 (2008).
Sun, J. H., Gale, B. J. S. & Reid, D. T. Composite frequency comb spanning 0.4–2.4 μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator. Opt. Lett. 32, 1414–1416 (2007).
Adler, F. et al. Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm. Opt. Lett. 34, 1330–1332 (2009).
Wong, S. T., Vodopyanov, K. L. & Byer, R. L. Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source. J. Opt. Soc. Am. B 27, 876–882 (2010).
Leindecker, N., Marandi, A., Byer, R. L. & Vodopyanov, K. L. Broadband degenerate OPO for mid-infrared frequency comb generation. Opt. Express 19, 6304–6310 (2011).
Leindecker, N. et al. Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt. Express 20, 7046–7053 (2012).
Vodopyanov, K. L., Sorokin, E., Sorokina, I. T. & Schunemann, P. G. Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator. Opt. Lett. 36, 2275–2277 (2011).
Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).
Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).
Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).
Del'Haye, P. et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011).
Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).
Domachuk, P. et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16, 7161–7168 (2008).
Yeom, D. I. et al. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt. Lett. 33, 660–662 (2008).
Kuyken, B. et al. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. Opt. Express 19, 20172–20181 (2011).
Qin, G. S. et al. Wideband supercontinuum generation in tapered tellurite microstructured fibers. Laser Phys. 21, 1115–1121 (2011).
Herr, T. et al. Universal dynamics of Kerr frequency comb formation in microresonators. Preprint at http://arxiv.org/abs/1111.3071 (2011).
Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).
Wang, C. Y. et al. Mid-infrared frequency combs based on microresonators. Preprint at http://arxiv.org/abs/1109.2716 (2011).
Daussy, C. et al. Long-distance frequency dissemination with a resolution of 10−17. Phys. Rev. Lett. 94, 203904 (2005).
Shelkovnikov, A., Butcher, R. J., Chardonnet, C. & Amy-Klein, A. Stability of the proton-to-electron mass ratio. Phys. Rev. Lett. 100, 150801 (2008).
Lemarchand, C. et al. Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy. New J. Phys. 13, 073028 (2011).
Darquié, B. et al. Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 22, 870–884 (2010).
Malara, P., Maddaloni, P., Gagliardi, G. & De Natale, P. Absolute frequency measurement of molecular transitions by a direct link to a comb generated around 3 μm. Opt. Express 16, 8242–8249 (2008).
Amy-Klein, A. et al. Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation. Opt. Lett. 30, 3320–3322 (2005).
Bielsa, F. et al. HCOOH high-resolution spectroscopy in the 9.18 μm region. J. Mol. Spectrosc. 247, 41–46 (2008).
Gatti, D. et al. High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb. Opt. Express 19, 17520–17527 (2011).
Bartalini, S. et al. Frequency-comb-referenced quantum-cascade laser at 4.4 μm. Opt. Lett. 32, 988–990 (2007).
Giusfredi, G. et al. Saturated-absorption cavity ring-down spectroscopy. Phys. Rev. Lett. 104, 110801 (2010).
Okubo, S., Nakayama, H., Iwakuni, K., Inaba, H. & Sasada, H. Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10−11. Opt. Express 19, 23878–23888 (2011).
Vainio, M., Merimaa, M. & Halonen, L. Frequency-comb-referenced molecular spectroscopy in the mid-infrared region. Opt. Lett. 36, 4122–4124 (2011).
Marian, A., Stowe, M. C., Lawall, J. R., Felinto, D. & Ye, J. United time–frequency spectroscopy for dynamics and global structure. Science 306, 2063–2068 (2004).
Teets, R., Eckstein, J. & Hänsch, T. W. Coherent two-photon excitation by multiple light pulses. Phys. Rev. Lett. 38, 760–764 (1977).
Eckstein, J. N., Ferguson, A. I. & Hänsch, T. W. High-resolution two-photon spectroscopy with picosecond light pulses. Phys. Rev. Lett. 40, 847–850 (1978).
Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).
Mandon, J., Guelachvili, G. & Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nature Photon. 4, 55–57 (2009).
Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nature Photon. 4, 55–57 (2010).
Thorpe, M. J. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B 91, 397–414 (2008).
Adler, F. et al. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Ann. Rev. Anal. Chem. 3, 175–205 (2010).
Thorpe, M. J. et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).
Griffiths, P. R. & De Haseth, J. A. Fourier Transform Infrared Spectroscopy 2nd edn, 1–656 (Wiley, 2007).
Adler, F. et al. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 18, 21861–21872 (2010).
Foltynowicz, A., Malowski, P., Fleisher, A. J., Bjork, B. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared — application to trace detection of H2O2 . Preprint at http://arxiv.org/abs/1202.1216 (2012).
Amarie, S. & Keilmann, F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Phys. Rev. B 83, 045404 (2011).
Ganz, T., Brehm, M., von Ribbeck, H. G., van der Weide, D. W. & Keilmann, F. Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials. New J. Phys. 10, 123007 (2008).
Brehm, M., Schliesser, A. & Keilmann, F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Opt. Express 14, 11222–11233 (2006).
Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2007).
Zolot, A. M. et al. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt. Lett. 37, 638–640 (2012).
Ideguchi, T., Poisson, A., Guelachvili, G., Picqué, N. & Hänsch, T. W. Adaptive real-time dual-comb spectroscopy. Preprint at http://arxiv.org/abs/1201.4177 (2012).
Ideguchi, T., Bernhardt, B., Guelachvili, G., Hänsch, T. W. & Picqué, N. Femtosecond stimulated raman dual-comb spectroscopy in CLEO: Applications and Technology paper CThC5.6 (OSA, 2012).
Zhang, Z. et al. Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy. Opt. Lett. 37, 187–189 (2012).
Cundiff, S. T. & Weiner, A. M. Optical arbitrary waveform generation. Nature Photon. 4, 760–766 (2010).
Steinmetz, T. et al. Laser frequency combs for astronomical observations. Science 23, 1335–1337 (2008).
Li, C.-H. et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1. Nature 452, 610–612 (2008).
Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995).
Figueira, P. et al. Radial velocities with CRIRES. Pushing precision down to 5–10 m/s. Astron. Astrophys. 511, A55 (2010).
Sheehy, B. et al. High harmonic generation at long wavelengths. Phys. Rev. Lett. 83, 5270–5273 (1999).
Krause, J. L., Schafer, K. J. & Kulander, K. C. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992).
Silva, F., Bates, P. K., Esteban-Martin, A., Ebrahim-Zadeh, M. & Biegert, J. High-average-power, carrier–envelope phase-stable, few-cycle pulses at 2.1 μm from a collinear BiB3O6 optical parametric amplifier. Opt. Lett. 37, 933–935 (2012).
Lee, S. J., Widiyatmoko, B., Kourogi, M. & Ohtsu, M. Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators. Jpn J. Appl. Phys. 40, L878–L880 (2001).
Giorgetta, F. R., Coddington, I., Baumann, E., Swann, W. C. & Newbury, N. R. Fast high-resolution spectroscopy of dynamic continuous-wave laser sources. Nature Photon. 4, 853–857 (2010).
Rothman, L. S. et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Ra. 110, 533–572 (2009).
Acknowledgements
T.W.H. and N.P. acknowledge support by the European Associated Laboratory 'European Laboratory for Frequency Comb Spectroscopy' and the Max Planck Foundation. A.S. acknowledges support from a Marie Curie IAPP programme and the Swiss National Science Foundation. A. Amy-Klein, E. Baumann, B. Darquié, P. de Natale, A. Foltynowicz-Matyba, F. Keilmann, T.J. Kippenberg, D. Mazzotti, N.R Newbury, K. Vodopyanov, C.Y. Wang and J.Ye are gratefully acknowledged for providing comments, data and figures.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schliesser, A., Picqué, N. & Hänsch, T. Mid-infrared frequency combs. Nature Photon 6, 440–449 (2012). https://doi.org/10.1038/nphoton.2012.142
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2012.142
This article is cited by
-
Mid-infrared cross-comb spectroscopy
Nature Communications (2023)
-
Highly efficient octave-spanning long-wavelength infrared generation with a 74% quantum efficiency in a χ(2) waveguide
Nature Communications (2023)
-
3D-patterned inverse-designed mid-infrared metaoptics
Nature Communications (2023)
-
The control of rogue wave in the mid-infrared supercontinuum with seed time delay
Nonlinear Dynamics (2023)
-
Design of hexagonal chalcogenide photonic crystal fiber with ultra-flattened dispersion in mid-infrared wavelength spectrum
Beni-Suef University Journal of Basic and Applied Sciences (2022)