Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terabit free-space data transmission employing orbital angular momentum multiplexing

Abstract

The recognition in the 1990s that light beams with a helical phase front have orbital angular momentum has benefited applications ranging from optical manipulation to quantum information processing. Recently, attention has been directed towards the opportunities for harnessing such beams in communications. Here, we demonstrate that four light beams with different values of orbital angular momentum and encoded with 42.8 × 4 Gbit s−1 quadrature amplitude modulation (16-QAM) signals can be multiplexed and demultiplexed, allowing a 1.37 Tbit s−1 aggregated rate and 25.6 bit s−1 Hz−1 spectral efficiency when combined with polarization multiplexing. Moreover, we show scalability in the spatial domain using two groups of concentric rings of eight polarization-multiplexed 20 × 4 Gbit s−1 16-QAM-carrying orbital angular momentum beams, achieving a capacity of 2.56 Tbit s−1 and spectral efficiency of 95.7 bit s−1 Hz−1. We also report data exchange between orbital angular momentum beams encoded with 100 Gbit s−1 differential quadrature phase-shift keying signals. These demonstrations suggest that orbital angular momentum could be a useful degree of freedom for increasing the capacity of free-space communications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept and principle.
Figure 2: Block diagram of the experimental set-up.
Figure 3: Experimental and theoretical results of multiplexing/demultiplexing of four OAM beams.
Figure 4: Experimental results of 16-QAM signals over pol-muxed OAM beams.
Figure 5: Data exchange between OAM beams.
Figure 6: Data exchange between 100 Gbit s−1 RZ-DQPSK-carrying OAM beams.

Similar content being viewed by others

References

  1. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  2. Jackson, J. D. Classical Electrodynamics (Wiley, 1962).

    MATH  Google Scholar 

  3. Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, 1989).

    Google Scholar 

  4. Poynting, J. H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909).

    ADS  MATH  Google Scholar 

  5. Beth, R. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    ADS  Google Scholar 

  6. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  7. Franke-Arnold, S., Allen, L. & Padgett, M. Advances in optical angular momentum. Laser Photon. Rev. 2, 299–313 (2008).

    Article  ADS  Google Scholar 

  8. Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011).

    Article  Google Scholar 

  9. Uchida, M. & Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010).

    Article  ADS  Google Scholar 

  10. McMorran, B. J. et al. Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011).

    Article  ADS  Google Scholar 

  11. Sasaki, S. & McNulty, I. Proposal for generating brilliant X-ray beams carrying orbital angular momentum. Phys. Rev. Lett. 100, 124801 (2008).

    Article  ADS  Google Scholar 

  12. Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

    Article  ADS  Google Scholar 

  13. Turnbull, G. A., Roberson, D. A., Smith, G. M., Allen, L. & Padgett, M. J. The generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. Opt. Commun. 127, 183–188 (1996).

    Article  ADS  Google Scholar 

  14. Thidé, B. et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 99, 087701 (2007).

    Article  ADS  Google Scholar 

  15. Tamburini, F. et al. Encoding many channels on the same frequency through radio vorticity: first experimental test. New J. Phys. 14, 033001 (2012).

    Article  ADS  Google Scholar 

  16. Dholakia, K. & Čižmár, T. Shaping the future of manipulation. Nature Photon. 5, 335–342 (2011).

    Article  ADS  Google Scholar 

  17. Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).

    Article  ADS  Google Scholar 

  18. MacDonald, M. P. et al. Creation and manipulation of three-dimensional optically trapped structures. Science 296, 1101–1103 (2002).

    Article  ADS  Google Scholar 

  19. Padgett, M. & Bowman, R. Tweezers with a twist. Nature Photon. 5, 343–348 (2011).

    Article  ADS  Google Scholar 

  20. Dennis, M. R., King, R. P., Jack, B., O'Holleran, K. & Padgett, M. J. Isolated optical vortex knots. Nature Phys. 6, 118–121 (2010).

    Article  ADS  Google Scholar 

  21. Bernet, S., Jesacher, A., Fürhapter, S., Maurer, C. & Ritsch-Marte, M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express 14, 3792–3805 (2006).

    Article  ADS  Google Scholar 

  22. Elias, N. M. II Photon orbital angular momentum in astronomy. Astron. Astrophys. 492, 883–922 (2008).

    Article  ADS  Google Scholar 

  23. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    Article  ADS  Google Scholar 

  24. Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305–310 (2007).

    Article  ADS  Google Scholar 

  25. Barreiro, J. T., Wei, T.-C. & Kwiat, P. G. Beating the channel capacity limit for linear photonic superdense coding. Nature Phys. 4, 282–286 (2008).

    Article  Google Scholar 

  26. Nagali, E. et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nature Photon. 3, 720–723 (2009).

    Article  ADS  Google Scholar 

  27. Leach, J. et al. Quantum correlations in optical angle-orbital angular momentum variables. Science 329, 662–665 (2010).

    Article  ADS  Google Scholar 

  28. Gibson, G. et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004).

    Article  ADS  Google Scholar 

  29. Shapiro, J. H., Guha, S. & Erkmen, B. I. Ultimate channel capacity of free-space optical communications. J. Opt. Netw 4, 501–516 (2005).

    Article  Google Scholar 

  30. Djordjevic, I. B. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation. Opt. Express 19, 14277–14289 (2011).

    Article  ADS  Google Scholar 

  31. Awaji, Y., Wada, N. & Toda, Y. Demonstration of spatial mode division multiplexing using Laguerre–Gaussian mode beam in telecom-wavelength in Proceedings of the IEEE Photonics Conference paper WBB2, PHO 2010, Denver (IEEE Photonics Society, 2010).

  32. Wang, J. et al. Demonstration of 12.8-bit/s/Hz spectral efficiency using 16-QAM signals over multiple orbital-angular-momentum modes, in Proceedings of the European Conference on Optical Communications paper We.10.P1.76, ECOC 2011, Geneva (Optical Society of America, 2011).

  33. Wang, J. et al. 25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes, in Proceedings of the IEEE Photonics Conference paper WW2, PHO 2011, Denver (IEEE Photonics Society, 2011).

  34. Fazal, I. M. et al. Demonstration of 2-Tbit/s data link using orthogonal orbital-angular-momentum modes and WDM, in Proceedings of the Frontiers in Optics paper FTuT1, FiO/LS 2011, San Jose (Optical Society of America, 2011).

  35. Wang, J. et al. Experimental demonstration of 100-Gbit/s DQPSK data exchange between orbital-angular-momentum modes, in Proceedings of the Optical Fiber Communication Conference paper OW1l.5, OFC/NFOEC 2012, Los Angeles (Optical Society of America, 2012).

  36. Doerr, C. R. et al. Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing, in Proceedings of the European Conference on Optical Communications paper Th.13.A.3, ECOC 2011, Geneva (Optical Society of America, 2011).

  37. Gnauck, A. H. et al. Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM. J. Lightwave Technol. 29, 373–377 (2011).

    Article  ADS  Google Scholar 

  38. Zhou, X. et al. 64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing. J. Lightwave Technol. 29, 571–577 (2011).

    Article  ADS  Google Scholar 

  39. Sano, A. et al. Ultra-high capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-band wideband optical amplification. J. Lightwave Technol. 29, 578–586 (2011).

    Article  ADS  Google Scholar 

  40. Richter, T. et al. Transmission of single-channel 16-QAM data signals at terabaud symbol rates. J. Lightwave Technol. 30, 504–511 (2012).

    Article  ADS  Google Scholar 

  41. Liu, X. et al. 1.12-Tb/s 32-QAM-OFDM superchannel with 8.6-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency. Opt. Express 19, B958–B964 (2011).

    Article  ADS  Google Scholar 

  42. Ryf, R. et al. Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Lightwave Technol. 30, 521–531 (2012).

    Article  ADS  Google Scholar 

  43. Hillerkuss, D. et al. 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nature Photon. 5, 364–371 (2011).

    Article  ADS  Google Scholar 

  44. Walborn, S. P., de Oliveira, A. N., Pádua, S. & Monken, C. H. Multimode Hong–Ou–Mandel Interference. Phys. Rev. Lett. 90, 143601 (2003).

    Article  ADS  Google Scholar 

  45. Paterson, C. Atmospheric turbulence and orbital angular momentum of single photons for optical communication. Phys. Rev. Lett. 94, 153901 (2005).

    Article  ADS  Google Scholar 

  46. Anguita, J. A., Neifeld, M. A. & Vasic, B. V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. Appl. Opt. 47, 2414–2429 (2008).

    Article  ADS  Google Scholar 

  47. Zhao, S. M., Leach, J., Gong, L. Y., Ding, J. & Zheng, B. Y. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states. Opt. Express 20, 452–461 (2012).

    Article  ADS  Google Scholar 

  48. Ramachandran, S., Kristensen, P. & Yan, M. F. Generation and propagation of radially polarized beams in optical fibers. Opt. Lett. 34, 2525–2527 (2009).

    Article  ADS  Google Scholar 

  49. Bozinovic, N., Kristensen, P. & Ramachandran, S. Long-range fiber-transmission of photons with orbital angular momentum, in Proceedings of the Conference on Lasers and Electro-Optics paper CTuB1, CLEO 2011 (Optical Society of America, 2011).

  50. Kogelnik, H. & Li, T. Laser beams and resonators. Appl. Opt. 5, 1550–1567 (1966).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Bozovich, B. Shamee, L. Zhang, K. Birnbaum, J. Choi, B. Erkmen, M. Neifeld and R. Willis for very fruitful discussions. This work was supported by the Defense Advanced Research Projects Agency (DARPA) under the InPho (Information in a Photon) programme.

Author information

Authors and Affiliations

Authors

Contributions

J.W., J.Y.Y., I.M.F., H.H., Y.Y., S.D., M.T. and A.E.W. developed the concept and conceived the experiments. J.W. performed the theoretical and numerical analyses. J.W., J.Y.Y., I.M.F., N.A., Y.Y., H.H., Y.R. and Y.Y. carried out the measurements and analysed the data. S.D., M.T. and A.E.W. provided technical support. All authors contributed to writing and finalizing the Article.

Corresponding authors

Correspondence to Jian Wang or Alan E. Willner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Yang, JY., Fazal, I. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photon 6, 488–496 (2012). https://doi.org/10.1038/nphoton.2012.138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing