Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universal formation dynamics and noise of Kerr-frequency combs in microresonators

Abstract

Optical frequency combs allow for the precise measurement of optical frequencies and are used in a growing number of applications. The new class of Kerr-frequency comb sources, based on parametric frequency conversion in optical microresonators, can complement conventional systems in applications requiring high repetition rates such as direct comb spectroscopy, spectrometer calibration, arbitrary optical waveform generation and advanced telecommunications. However, a severe limitation in experiments working towards practical systems is phase noise, observed in the form of linewidth broadening, multiple repetition-rate beat notes and loss of temporal coherence. These phenomena are not explained by the current theory of Kerr comb formation, yet understanding this is crucial to the maturation of Kerr comb technology. Here, based on observations in crystalline MgF2 and planar Si3N4 microresonators, we reveal the universal, platform-independent dynamics of Kerr comb formation, allowing the explanation of a wide range of phenomena not previously understood, as well as identifying the condition for, and transition to, low-phase-noise performance.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Multiple and broad beat notes.
Figure 2: Kerr comb formation.
Figure 3: Commensurability of subcombs.
Figure 4: Kerr comb reconstruction.
Figure 5: Transition to a low phase noise Kerr comb.

References

  1. Holzwarth, R. et al. Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000).

    Article  ADS  Google Scholar 

  2. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  3. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  4. Cundiff, S. T. & Ye, J. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    Article  ADS  Google Scholar 

  5. Newbury, N. R. Searching for applications with a fine-tooth comb. Nature Photon. 5, 186–188 (2011).

    Article  ADS  Google Scholar 

  6. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  7. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  8. Murphy, M. T. et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon. Not. R. Astron. Soc. 380, 839–847 (2007).

    Article  ADS  Google Scholar 

  9. Steinmetz, T. et al. Laser frequency combs for astronomical observations. Science 321, 1335–1337 (2008).

    Article  ADS  Google Scholar 

  10. Li, C. H. et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1. Nature 452, 610–612 (2008).

    Article  ADS  Google Scholar 

  11. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  12. Jiang, Z., Huang, C. B., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photon. 1, 463–467 (2007).

    Article  ADS  Google Scholar 

  13. Ferdous, F. et al. Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb. Nature Photon. 5, 770–776 (2011).

    Article  ADS  Google Scholar 

  14. Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    Article  ADS  Google Scholar 

  15. Grudinin, I. S., Yu, N. & Maleki, L. Generation of optical frequency combs with a CaF2 resonator. Opt. Lett. 34, 878–880 (2009).

    Article  ADS  Google Scholar 

  16. Herr, T. et al. in Proc. Quantum Electronics and Laser Science Conference paper QTuF1 (Optical Society of America, 2011).

  17. Liang, W. et al. Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator. Opt. Lett. 36, 2290–2292 (2011).

    Article  ADS  Google Scholar 

  18. Wang, C. Y. et al. Mid-infrared optical frequency combs based on crystalline microresonators. Preprint at http://arXiv.org/abs/1109.2716 (2011).

  19. Agha, I. H., Okawachi, Y., Foster, M. A., Sharping, J. E. & Gaeta, A. L. Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres. Phys. Rev. A 76, 043837 (2007).

    Article  ADS  Google Scholar 

  20. Razzari, L. et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

    Article  ADS  Google Scholar 

  21. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

    Article  ADS  Google Scholar 

  22. Foster, M. A. et al. Silicon-based monolithic optical frequency comb source. Opt. Express 19, 14233–14239 (2011).

    Article  ADS  Google Scholar 

  23. Braje, D., Hollberg, L. & Diddams, S. Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a CW laser. Phys. Rev. Lett. 102, 193902 (2009).

    Article  ADS  Google Scholar 

  24. Del'Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R. & Kippenberg, T. J. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101, 053903 (2008).

    Article  ADS  Google Scholar 

  25. Del'Haye, P. et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011).

    Article  ADS  Google Scholar 

  26. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    Article  ADS  Google Scholar 

  27. Savchenkov, A. A. et al. Kerr combs with selectable central frequency. Nature Photon. 5, 293–296 (2011).

    Article  ADS  Google Scholar 

  28. Chembo, Y. K., Strekalov, D. V. & Yu, N. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys. Rev. Lett. 104, 103902 (2010).

    Article  ADS  Google Scholar 

  29. Chembo, Y. K. & Yu, N. Modal expansion approach to optical frequency combs generation with monolithic whispering gallery mode resonators. Phys. Rev. A 82, 033801 (2010).

    Article  ADS  Google Scholar 

  30. Papp, S. B. & Diddams, S. A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys. Rev. A 84, 053833 (2011).

    Article  ADS  Google Scholar 

  31. Carmon, T., Yang, L. & Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    Article  ADS  Google Scholar 

  32. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  33. Braginsky, V. B., Gorodetsky, M. L. & Vyatchanin, S. P. Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae. Phys. Lett. A 264, 1–10 (1999).

    Article  ADS  Google Scholar 

  34. Gorodetsky, M. L. & Grudinin, I. S. Fundamental thermal fluctuations in microspheres. J. Opt. Soc. Am. B 21, 697–705 (2004).

    Article  ADS  Google Scholar 

  35. Matsko, A. B., Savchenkov, A. A., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. i. fundamental limitations. J. Opt. Soc. Am. B 24, 1324–1335 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  36. Rokhsari, H., Kippenberg, T. J., Carmon, T. & Vahala, K. J. Radiation-pressure-driven micro-mechanical oscillator. Opt. Express 13, 5293–5301 (2005).

    Article  ADS  Google Scholar 

  37. Ma, R. et al. Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres. Opt. Lett. 32, 2200–2202 (2007).

    Article  ADS  Google Scholar 

  38. Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S., Seidel, D. & Maleki, L. Surface acoustic wave opto-mechanical oscillator and frequency comb generator. Opt. Lett. 36, 3338–3340 (2011).

    Article  ADS  Google Scholar 

  39. Fomin, A. E., Gorodetsky, M. L., Grudinin, I. S. & Ilchenko, V. S. Nonstationary nonlinear effects in optical microspheres. J. Opt. Soc. Am. B 22, 459–465 (2005).

    Article  ADS  Google Scholar 

  40. Del'Haye, P., Arcizet, O., Gorodetsky, M. L., Holzwarth, R. & Kippenberg, T. J. Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion. Nature Photon. 3, 529–533 (2009).

    Article  ADS  Google Scholar 

  41. Hofer, J., Schliesser, A. & Kippenberg, T. J. Cavity optomechanics with ultrahigh-Q crystalline microresonators. Phys. Rev. A 82, 031804 (2010).

    Article  ADS  Google Scholar 

  42. Bahl, G., Zehnpfennig, J., Tomes, M. & Carmon, T. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nature Commun. 2, 403 (2011).

    Article  ADS  Google Scholar 

  43. Carmon, T., Cross, M. C. & Vahala, K. J. Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure. Phys. Rev. Lett. 98, 167203 (2007).

    Article  ADS  Google Scholar 

  44. Savchenkov, A. A., Rubiola, E., Matsko, A. B., Ilchenko, V. S. & Maleki, L. Phase noise of whispering gallery photonic hyper-parametric microwave oscillators. Opt. Express 16, 4130–4144 (2008).

    Article  ADS  Google Scholar 

  45. Agha, I. H., Okawachi, Y. & Gaeta, A. L. Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Opt. Express 17, 16209–16215 (2009).

    Article  ADS  Google Scholar 

  46. Arcizet, O., Schliesser, A., Del'Haye, P., Holzwarth, R. & Kippenberg, T. J. in Practical Applications of Microresonators in Optics and Photonics, Ch. 11, 483–506 (CRC Press, 2009).

  47. Matsko, A. B., Savchenkov, A. A., Strekalov, D., Ilchenko, V. S. & Maleki, L. Optical hyperparametric oscillations in a whispering-gallery-mode resonator: threshold and phase diffusion. Phys. Rev. A 71, 033804 (2005).

    Article  ADS  Google Scholar 

  48. Liang, W. et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser. Opt. Lett. 35, 2822–2824 (2010).

    Article  ADS  Google Scholar 

  49. Carmon, T. et al. Static envelope patterns in composite resonances generated by level crossing in optical toroidal microcavities. Phys. Rev. Lett. 100, 103905 (2008).

    Article  ADS  Google Scholar 

  50. Matsko, A. B. et al. Optical Kerr frequency comb generation in overmoded resonators. Preprint at http://ArXiv.org/abs/1201.1959 (2012).

Download references

Acknowledgements

This work was funded by a Marie Curie IAPP, Eurostars, the Swiss National Science Foundation, the NCCR Nanoterra NTF and DARPA QuASAR. M.L.G. acknowledges support from the Dynasty Foundation and the Russian Foundation for Basic Research (grant 11-02-00383-a). The authors acknowledge helpful discussions with P. Del'Haye in the early phase of this work.

Author information

Authors and Affiliations

Authors

Contributions

T.H. and T.J.K designed the experiments. T.H. and J.R. performed the experiments. T.H. analysed the data. K.H. fabricated the Si3N4 samples. E.G. contributed in the early phase of the Si3N4 sample fabrication. T.H. and C.Y.W. fabricated the MgF2 samples. M.L.G., T.H. and T.J.K. developed the quantitative model. All authors discussed the data and wrote the manuscript.

Corresponding author

Correspondence to T. J. Kippenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1506 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herr, T., Hartinger, K., Riemensberger, J. et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photon 6, 480–487 (2012). https://doi.org/10.1038/nphoton.2012.127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing