Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large spontaneous emission enhancement in plasmonic nanocavities

Abstract

Cavity–emitter coupling can enable a host of potential applications in quantum optics, from low-threshold lasers to brighter single-photon sources for quantum cryptography1. Although some of the first demonstrations of spontaneous emission modification occurred in metallic structures2,3, it was only after the recent demonstration of cavity quantum electrodynamics effects in dielectric optical cavities4 that metal-based optical cavities were considered for quantum optics applications5,6,7,8,9,10,11,12,13. Advantages of metal–optical cavities include their compatibility with a large variety of emitters and their broadband cavity spectra, which enable enhancement of spectrally broad emitters. Here, we demonstrate radiative emission rate enhancements approaching 1,000 for emitters coupled to the nanoscale gap between a silver nanowire and a silver substrate. A quantitative comparison of our results with analytical theory shows that the enhanced emission rate of gap-mode plasmons in our structures can yield high internal quantum efficiency despite the close proximity of metal surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gap plasmon nanocavity containing coupled emitters.
Figure 2: Spectral and temporal characteristics of cavity-coupled Alq3 fluorescence.
Figure 3: Theoretical emission rate and efficiency versus spacer thickness for a silver gap structure.
Figure 4: Cavity enhancement characteristics.

Similar content being viewed by others

References

  1. Noda, S., Fujita, M. & Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nature Photon. 1, 449–458 (2007).

    Article  ADS  Google Scholar 

  2. Chance, R. R., Prock, A. & Silbey, R. Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (1978).

    Google Scholar 

  3. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    Article  ADS  Google Scholar 

  4. Shields, A. J. Semiconductor quantum light sources. Nature Photon. 1, 215–223 (2007).

    Article  ADS  Google Scholar 

  5. Chang, D. E., Sorensen, A. S., Hemmer, P. R. & Lukin, M. D. Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006).

    Article  ADS  Google Scholar 

  6. Maier, S. Effective mode volume of nanoscale plasmon cavities. Opt. Quant. Electron. 38, 257–267 (2006).

    Article  Google Scholar 

  7. Gong, Y. & Vučković, J. Design of plasmon cavities for solid-state cavity quantum electrodynamics applications. Appl. Phys. Lett. 90, 033113 (2007).

    Article  ADS  Google Scholar 

  8. Jun, Y. C., Kekatpure, R. D., White, J. S. & Brongersma, M. L. Nonresonant enhancement of spontaneous emission in metal–dielectric–metal plasmon waveguide structures. Phys. Rev. B 78, 153111 (2008).

    Article  ADS  Google Scholar 

  9. Esteban, R., Teperik, T. V. & Greffet, J. J. Optical patch antennas for single photon emission using surface plasmon resonances. Phys. Rev. Lett. 104, 026802 (2010).

    Article  ADS  Google Scholar 

  10. Vesseur, E. J. R., de Abajo, F. J. G. & Polman, A. Broadband Purcell enhancement in plasmonic ring cavities. Phys. Rev. B 82, 165419 (2010).

    Article  ADS  Google Scholar 

  11. Miyazaki, H. T. & Kurokawa, Y. Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. 96, 097401 (2006).

    Article  ADS  Google Scholar 

  12. Gong, Y., Lu, J., Cheng, S.-L., Nishi, Y. & Vučković, J. Plasmonic enhancement of emission from Si-nanocrystals. Appl. Phys. Lett. 94, 013106 (2009).

    Article  ADS  Google Scholar 

  13. Jun, Y. C., Pala, R. & Brongersma, M. L. Strong modification of quantum dot spontaneous emission via gap plasmon coupling in metal nanoslits. J. Phys. Chem. C 114, 7269–7273 (2010).

    Article  Google Scholar 

  14. Brongersma, M. L. & Shalaev, V. M. The case for plasmonics. Science 328, 440–441 (2010).

    Article  ADS  Google Scholar 

  15. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  ADS  Google Scholar 

  16. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    Article  ADS  Google Scholar 

  17. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  18. Yoon, I. et al. Single nanowire on a film as an efficient SERS-active platform. J. Am. Chem. Soc. 131, 758–762 (2009).

    Article  Google Scholar 

  19. Russell, K. J. & Hu, E. L. Gap-mode plasmonic nanocavity. Appl. Phys. Lett. 97, 163115 (2010).

    Article  ADS  Google Scholar 

  20. McMahon, J. M., Gray, S. K. & Schatz, G. C. Nonlocal optical response of metal nanostructures with arbitrary shape. Phys. Rev. Lett. 103, 097403 (2009).

    Article  ADS  Google Scholar 

  21. Nagpal, P., Lindquist, N. C., Oh, S.-H. & Norris, D. J. Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325, 594–597 (2009).

    Article  ADS  Google Scholar 

  22. Priestley, R., Sokolik, I., Walser, A. D., Tang, C. W. & Dorsinville, R. Photooxidation effects on picosecond photoluminescence and photoconductivity in tris-(8-hydroxyquinoline) aluminum (Alq3). Synth. Met. 84, 915–916 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the NSF/NSEC (NSF/PHY-06-46094), the use of NSF/NNIN facilities at Harvard University's Center for Nanoscale Systems, and the use of the HPC computer cluster at Harvard.

Author information

Authors and Affiliations

Authors

Contributions

K.J.R. designed and performed experiments, analysed data and wrote the paper. T.L.L. designed and performed experiments and analysed data. S.Y.C. performed experiments. E.L.H. designed experiments, analysed data and wrote the paper.

Corresponding author

Correspondence to Kasey J. Russell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1094 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, K., Liu, TL., Cui, S. et al. Large spontaneous emission enhancement in plasmonic nanocavities. Nature Photon 6, 459–462 (2012). https://doi.org/10.1038/nphoton.2012.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing