Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A micromachining-based technology for enhancing germanium light emission via tensile strain

Abstract

Germanium is an attractive material for silicon-compatible optoelectronics, but in its bulk form it does not emit light efficiently because of its indirect bandgap. Applying tensile strain to germanium modifies its band structure such that radiative recombination is enhanced, leading to improved light emission. Here, we introduce the ‘suspension platform for optoelectronics under tension’, a micromachining-based technology that applies large, locally tunable tensile strains to suspended device layers. Using this approach, we demonstrate dramatically enhanced light emission from uniaxially and biaxially tensile-strained germanium-on-insulator device layers. Photoluminescence enhanced by a factor of 130 at a wavelength of 1,550 nm and integrated enhancement by greater than a factor of 260 over bulk germanium are described. The emission exhibits a superlinear dependence on optical pump power. We also report preliminary evidence for enhanced electroluminescence from suspended germanium-on-insulator light-emitting diodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Finite-element simulations of tensile-strained suspended (100) GOI device layers with 100-nm-thick germanium on 1-µm-thick SiO2 and 1-µm-thick Si3N4 stressors with 1 GPa initial intrinsic tensile stress.
Figure 2: Spectral photoluminescence analysis of a suspended 20 µm × 100 µm (100) GOI device layer under 0.98% uniaxial tensile strain along [100] with 60-µm-wide Si3N4 stressors.
Figure 3: Photoluminescence emission at 1,550 nm with optical pump power from tensile-strained suspended (100) GOI device layers.
Figure 4: Schematic illustrations of radiative recombination in germanium.
Figure 5: Theoretical steady-state modelling of photoluminescence emission from the 0.82% biaxially tensile-strained device of Fig. 3b.
Figure 6: Preliminary electroluminescence results from tensile-strained suspended (100) GOI LEDs.

Similar content being viewed by others

References

  1. Soref, R. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quant. Electron. 12, 1678–1687 (2006).

    Article  ADS  Google Scholar 

  2. Kasper, E. Prospects and challenges of silicon/germanium on-chip optoelectronics. Frontiers Optoelectron. China 3, 143–152 (2010).

    Article  Google Scholar 

  3. Reed, G. T., Mashanovich, G., Gardes, F. Y. & Thomson, D. J. Silicon optical modulators. Nature Photon. 4, 518–526 (2010).

    Article  ADS  Google Scholar 

  4. Michel, J., Liu, J. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nature Photon. 4, 527–534 (2010).

    Article  ADS  Google Scholar 

  5. Leuthold, J., Koos, C. & Freude, W. Nonlinear silicon photonics. Nature Photon. 4, 535–544 (2010).

    Article  ADS  Google Scholar 

  6. Dosunmu, O. I. et al. Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates. IEEE J. Sel. Top. Quant. Electron. 10, 694–701 (2004).

    Article  ADS  Google Scholar 

  7. Chen, L. & Lipson, M. Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt. Express 17, 7901–7906 (2009).

    Article  ADS  Google Scholar 

  8. Assefa, S., Xia, F. & Vlasov, Y. A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84 (2010).

    Article  ADS  Google Scholar 

  9. Fischetti, M. V. & Laux, S. E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996).

    Article  ADS  Google Scholar 

  10. Cao, L., Park, J.-S., Fan, P., Clemens, B. & Brongersma, M. L. Resonant germanium nanoantenna photodetectors. Nano Lett. 10, 1229–1233 (2010).

    Article  ADS  Google Scholar 

  11. Stoney, G. G. The tension of metallic films deposited by electrolysis. Proc. Math. Phys. Eng. Sci. 82, 172–175 (1909).

    Article  Google Scholar 

  12. Thompson, S. E. et al. A logic nanotechnology featuring strained-silicon. IEEE Electron. Dev. Lett. 25, 191–193 (2004).

    Article  ADS  Google Scholar 

  13. Ghani, T. et al. A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. IEDM Tech. Dig. 978–980 (2003).

  14. Mistry, K. et al. Delaying forever: uniaxial strained silicon transistors in a 90 nm CMOS technology. Symp. VLSI Tech. Dig. 50–51 (2004).

  15. Philipp, H. R. & Taft, E. A. Optical constants of germanium in the region 1 to 10 eV. Phys. Rev. 113, 1002–1005 (1959).

    Article  ADS  Google Scholar 

  16. Jain, J. R. et al. Tensile-strained germanium-on-insulator substrate fabrication for silicon-compatible optoelectronics. Opt. Mater. Express 1, 1121–1126 (2011).

    Article  ADS  Google Scholar 

  17. Sun, X., Liu, J., Kimerling, L. C. & Michel, J. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Opt. Lett. 34, 1198–1200 (2009).

    Article  ADS  Google Scholar 

  18. Klingenstein, W. & Schweizer, H. Direct gap recombination in germanium at high excitation level and low temperature. Solid State Electron. 21, 1371–1374 (1978).

    Article  ADS  Google Scholar 

  19. Cheng, T.-H. et al. Competitiveness between direct and indirect radiative transitions of Ge. Appl. Phys. Lett. 96, 091105 (2010).

    Article  ADS  Google Scholar 

  20. Liu, J. et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express 15, 11272–11277 (2007).

    Article  ADS  Google Scholar 

  21. van Roosbroeck, W. & Shockley, W. Photon-radiative recombination of electrons and holes in germanium. Phys. Rev. 94, 1558–1560 (1954).

    Article  ADS  Google Scholar 

  22. Brill, P. H. & Schwarz, R. F. Radiative recombination in germanium. Phys. Rev. 112, 330–333 (1958).

    Article  ADS  Google Scholar 

  23. Marchetti, S., Martinelli, M., Simili, R., Giorgi, M. & Fantoni, R. Measurement of Ge electrical parameters by analysing its optical dynamics. Phys. Scr. 64, 509–511 (2001).

    Article  ADS  Google Scholar 

  24. van de Walle, C. G. Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989).

    Article  ADS  Google Scholar 

  25. Zhang, F., Crespi, V. H. & Zhang, P. Prediction that uniaxial tension along <111> produces a direct band gap in germanium. Phys. Rev. Lett. 102, 156401 (2009).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Stanford Nanofabrication Facility of the National Nanotechnology Infrastructure Network. The authors thank D.S. Ly-Gagnon and K.C. Balram of Stanford University for useful discussions. Funding for A.H. and M.L.B. was obtained from the Si-based Laser Initiative of the Multidisciplinary University Research Initiative (MURI) under the Air Force Aerospace Research OSR (award no. FA9550-06-1-0470).

Author information

Authors and Affiliations

Authors

Contributions

J.R.J. and R.T.H. conceived the idea for the technology. J.R.J. conducted strain simulations, device fabrication, photoluminescence and Raman measurements/analysis, theoretical modelling/analysis and manuscript preparation. A.H. contributed to photoluminescence measurements/analysis and manuscript preparation. T.M.B. contributed to photoluminescence and Raman analysis and manuscript preparation. D.A.B.M contributed to photoluminescence and Raman analysis, theoretical modelling/analysis and manuscript preparation. M.L.B contributed to photoluminescence and Raman analysis, theoretical modelling/analysis and manuscript preparation. R.T.H. also contributed to photoluminescence and Raman analysis, theoretical analysis and manuscript preparation.

Corresponding author

Correspondence to Jinendra Raja Jain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1065 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, J., Hryciw, A., Baer, T. et al. A micromachining-based technology for enhancing germanium light emission via tensile strain. Nature Photon 6, 398–405 (2012). https://doi.org/10.1038/nphoton.2012.111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing