Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chemically etched ultrahigh-Q wedge-resonator on a silicon chip

Abstract

Ultrahigh-Q optical resonators are being studied across a wide range of fields, including quantum information, nonlinear optics, cavity optomechanics and telecommunications1,2,3,4,5,6,7. Here, we demonstrate a new resonator with a record Q-factor of 875 million for on-chip devices. The fabrication of our device avoids the requirement for a specialized processing step, which in microtoroid resonators8 has made it difficult to control their size and achieve millimetre- and centimetre-scale diameters. Attaining these sizes is important in applications such as microcombs and potentially also in rotation sensing. As an application of size control, stimulated Brillouin lasers incorporating our device are demonstrated. The resonators not only set a new benchmark for the Q-factor on a chip, but also provide, for the first time, full compatibility of this important device class with conventional semiconductor processing. This feature will greatly expand the range of possible ‘system on a chip’ functions enabled by ultrahigh-Q devices.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Micrographs and mode renderings of the wedge-resonator from top and side views.
Figure 2: Data showing measured Q-factor plotted versus resonator diameter with oxide thickness as a parameter.
Figure 3: Plot of measured FSR versus target design-value resonator diameter on a lithographic mask.
Figure 4: Illustration of tuning control of the SBL devices.
Figure 5: Data plot showing effect of etch time on appearance of the ‘foot’ region in etching of a 10-μm-thick silica layer.

References

  1. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  2. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  ADS  Google Scholar 

  3. Kippenberg, T. J. & Vahala, K. J. Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007).

    Article  ADS  Google Scholar 

  4. Matsko, A. B. & Ilchenko, V. S. Optical resonators with whispering-gallery modes-part I: basics. IEEE J. Sel. Top. Quant. Electron. 12, 3–14 (2006).

    Article  ADS  Google Scholar 

  5. Ilchenko, V. S. & Matsko, A. B. Optical resonators with whispering-gallery modes-part II: applications. IEEE J. Sel. Top. Quant. Electron. 12, 15–32 (2006).

    Article  ADS  Google Scholar 

  6. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  7. Aoki, T. et al. Observation of strong coupling between one atom and a monolithic microresonator. Nature 442, 671–674 (2006).

    Article  ADS  Google Scholar 

  8. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–929 (2003).

    Article  ADS  Google Scholar 

  9. Grudinin, I. S., Matsko, A. B. & Maleki, L. On the fundamental limits of Q-factor of crystalline dielectric resonators. Opt. Express 15, 3390–3395 (2007).

    Article  ADS  Google Scholar 

  10. Grudinin, I. S., Ilchenko, V. S. & Maleki, L. Ultrahigh optical Q-factors of crystalline resonators in the linear regime. Phys. Rev. A 74, 063806 (2006).

    Article  ADS  Google Scholar 

  11. Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S. & Maleki, L. Optical resonators with ten million finesse. Opt. Express 15, 6768–6773 (2007).

    Article  ADS  Google Scholar 

  12. Tomes, M. & Carmon, T. Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates. Phys. Rev. Lett. 102, 113601 (2009).

    Article  ADS  Google Scholar 

  13. Grudinin, I. S., Yu, N. & Maleki, L. Brillouin lasing with a CaF2 whispering gallery mode resonator. Phys. Rev. Lett. 102, 043902 (2009).

    Article  ADS  Google Scholar 

  14. Pant, R. et al. Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder Stokes generation. Opt. Lett. 36, 3687–3689 (2011).

    Article  ADS  Google Scholar 

  15. Kippenberg, T. J., Kalkman, J., Polman, A. & Vahala, K. J. Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys. Rev. A 74, 051802 (2006).

    Article  ADS  Google Scholar 

  16. Cai, M., Painter, O. J. & Vahala, K. J. Observation of critical coupling in a fiber taper to silica-microsphere whispering gallery mode system. Phys. Rev. Lett. 74, 051802 (2006).

    Google Scholar 

  17. Spillane, S. M., Kippenberg, T. J., Painter, O. J. & Vahala, K. J. Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003).

    Article  ADS  Google Scholar 

  18. Vernooy, D. W., Ilchenko, V. S., Mabuchi, H., Streed, E. W. & Kimble, H. J. High-Q measurements of fused-silica microspheres in the near infrared. Opt. Lett. 23, 247–249 (1998).

    Article  ADS  Google Scholar 

  19. Smith, S. P., Zarinetchi, F. & Ezekiel, S. Narrow-linewidth stimulated Brillouin fiber laser and applications. Opt. Lett. 16, 393–395 (1991).

    Article  ADS  Google Scholar 

  20. Okawachi, Y. et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005).

    Article  ADS  Google Scholar 

  21. Zhu, Z., Dawes, A., Gauthier, D., Zhang, L. & Willner, A. Broadband SBS slow light in an optical fiber. J. Lightwave Technol. 25, 201–206 (2007).

    Article  ADS  Google Scholar 

  22. Zhu, Z., Gauthier, D. & Boyd, R. Stored light in an optical fiber via stimulated Brillouin scattering. Science 318, 1748–1750 (2007).

    Article  ADS  Google Scholar 

  23. Hänsch, T. & Couillaud, B. Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35, 441–444 (1980).

    Article  ADS  Google Scholar 

  24. Schliesser, A., Riviere, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nature Phys. 4, 415–419 (2008).

    Article  ADS  Google Scholar 

  25. Tkach, R. W., Chraplyvy, A. R. & Derosier, R. M. Spontaneous Brillouin scattering for single-mode optical-fibre characterisation. Electron. Lett. 22, 1011–1013 (1986).

    Article  Google Scholar 

  26. Del'Haye, P., Arcizet, O., Schliesser, A., Holzwarth, R. & Kippenberg, T. J. Full stabilization of a microresonator frequency comb. Phys. Rev. Lett. 101, 053903 (2008).

    Article  ADS  Google Scholar 

  27. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  28. Ciminelli, C., Dell'Olio, F., Campanella, C. & Armenise, M. Photonic technologies for angular velocity sensing. Adv. Opt. Photon. 2, 370–404 (2010).

    Article  Google Scholar 

  29. Matsko, A. B., Savchenkov, A. A., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. I. Fundamental limitations. J. Opt. Soc. Am. B 24, 1324–1335 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  30. Savchenkov, A. A., Matsko, A. B., Ilchenko, V. S., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. II. Stabilization. J. Opt. Soc. Am. B 24, 2988–2997 (2007).

    Article  ADS  Google Scholar 

  31. Gorodetsky, M. L. & Grudinin, I. S. Fundamental thermal fluctuations in microspheres. J. Opt. Soc. Am. B 21, 697–705 (2004).

    Article  ADS  Google Scholar 

  32. Anetsberger, G., Riviére, R., Schliesser, A., Arcizet, O. & Kippenberg, T. J. Demonstration of ultra low dissipation optomechanical resonators on a chip. Nature Photon. 2, 627–633 (2008).

    Article  Google Scholar 

  33. Tien, M. C. et al. Ultra-high quality factor planar Si3N4 ring resonators on Si substrates. Opt. Express 19, 13551–13556 (2011).

    Article  ADS  Google Scholar 

  34. Ciminelli, C., Passaro, V., Dell'Olio, F. & Armenise, M. Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides. J. Eur. Opt. Soc. Rapid Publ. 4, 1–6 (2009).

    Google Scholar 

  35. Barwicz, T. & Haus, H. Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides. J. Lightwave Technol. 23, 2719–2732 (2005).

    Article  ADS  Google Scholar 

  36. Payne, F. & Lacey, J. A theoretical analysis of scattering loss from planar optical waveguides. Opt. Quantum. Electron. 26, 977–986 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Defense Advanced Research Projects Agency under the iPhoD and Orchid programmes and also the Kavli Nanoscience Institute at Caltech. H.L. acknowledges support from the Center for the Physics of Information, and S.J. thanks the Kwanjeong Educational Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors made important contributions. H.L., T.C. and J.L. performed measurements and modelling, and contributed equally to the work. H.L. performed microfabrication of devices with assistance from T.C. and K.Y. AFM measurements were performed by H.L. and S.J. The experiments were conceived, designed and planned by H.L., T.C., J.L., O.P. and K.J.V. All authors helped to write the manuscript.

Corresponding author

Correspondence to Kerry J. Vahala.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1363 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, H., Chen, T., Li, J. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nature Photon 6, 369–373 (2012). https://doi.org/10.1038/nphoton.2012.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing