Tweezers with a twist

Abstract

The fact that light carries both linear and angular momentum is well-known to physicists. One application of the linear momentum of light is for optical tweezers, in which the refraction of a laser beam through a particle provides a reaction force that draws the particle towards the centre of the beam. The angular momentum of light can also be transfered to particles, causing them to spin. In fact, the angular momentum of light has two components that act through different mechanisms on various types of particle. This Review covers the creation of such beams and how their unusual intensity, polarization and phase structure has been put to use in the field of optical manipulation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Light beams can carry both OAM and spin angular momentum.
Figure 2: Several different force mechanisms are involved in optical trapping.
Figure 3: Different methods of applying optical torque.
Figure 4: 1-µm-diameter beads circulate when held in an optical vortex.
Figure 5: A microfluidic pump can be created using two birefringent particles.
Figure 6: A microfabricated paddle-wheel is driven by the scattering force from a laser beam.

References

  1. 1

    Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    ADS  Article  Google Scholar 

  2. 2

    He, H., Friese, M., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett. 75, 826–829 (1995).

    ADS  Google Scholar 

  3. 3

    Simpson, N., Dholakia, K., Allen, L. & Padgett, M. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt. Lett. 22, 52–54 (1997).

    ADS  Google Scholar 

  4. 4

    Poynting, J. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light. Proc. R. Soc. Lond. A 82, 560–567 (1909).

    ADS  MATH  Google Scholar 

  5. 5

    Beth, R. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    ADS  Google Scholar 

  6. 6

    Jackson, J. Classical Electrodynamics 3rd edn (Wiley, 2007).

    Google Scholar 

  7. 7

    Turnbull, G. A., Roberson, D. A., Smith, G. M., Allen, L. & Padgett, M. J. Generation of free-space Laguerre–Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. Opt. Commun. 127, 183–188 (1996).

    ADS  Google Scholar 

  8. 8

    Beijersbergen, M. W., Allen, L., van der Veen, H. & Woerdman, J. P. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun. 96, 123–132 (1993).

    ADS  Google Scholar 

  9. 9

    Bazhenov, V., Vasnetsov, M. V. & Soskin, M. S. Laser-beams with screw dislocations in their wave-fronts. JETP Lett. 52, 429–431 (1990).

    Google Scholar 

  10. 10

    Heckenberg, N. R., McDuff, R., Smith, C. P. & White, A. Generation of optical phase singularities by computer-generated holograms. Opt. Lett. 17, 221–223 (1992).

    ADS  Google Scholar 

  11. 11

    Guo, C., Liu, X., He, J. & Wang, H. Optimal annulus structures of optical vortices. Opt. Express 12, 4625–4634 (2004).

    ADS  Google Scholar 

  12. 12

    Nye, J. F. & Berry, M. Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974).

    ADS  MathSciNet  MATH  Google Scholar 

  13. 13

    Berry, M., Nye, J. & Wright, F. The elliptic umbilic diffraction catastrophe. Phil. Trans. R. Soc. Lond. 291, 453–484 (1979).

    ADS  Google Scholar 

  14. 14

    Coullet, P., Gil, G. & Rocca, F. Optical vortices. Opt. Commun. 73, 403–408 (1989).

    ADS  Google Scholar 

  15. 15

    Wulff, K. et al. Aberration correction in holographic optical tweezers. Opt. Express 14, 4169–4174 (2006).

    ADS  Google Scholar 

  16. 16

    Jesacher, A. et al. Wavefront correction of spatial light modulators using an optical vortex image. Opt. Express 15, 5801–5808 (2007).

    ADS  Google Scholar 

  17. 17

    Ashkin, A., Dziedzic, J., Bjorkholm, J. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS  Google Scholar 

  18. 18

    He, H., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms. J. Mod. Opt. 42, 217–223 (1995).

    ADS  Google Scholar 

  19. 19

    Friese, M., Enger, J., Rubinsztein-Dunlop, H. & Heckenberg, N. Optical angular-momentum transfer to trapped absorbing particles. Phys. Rev. A 54, 1593–1596 (1996).

    ADS  Google Scholar 

  20. 20

    Friese, M., Nieminen, T., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical alignment and spinning of laser-trapped microscopic particles. Nature. 394, 348–350 (1998).

    ADS  Google Scholar 

  21. 21

    Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 330, 769–771 (1987).

    ADS  Google Scholar 

  22. 22

    Sato, S., Ishigure, M. & Inaba, H. Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd:YAG laser beams. Electron. Lett. 27, 1831–1832 (1991).

    Google Scholar 

  23. 23

    Paterson, L. et al. Controlled rotation of optically trapped microscopic particles. Science 292, 912–914 (2001).

    ADS  Google Scholar 

  24. 24

    MacDonald, M. et al. Revolving interference patterns for the rotation of optically trapped particles. Opt. Commun. 201, 21–28 (2002).

    ADS  Google Scholar 

  25. 25

    O'Neil, A. & Padgett, M. Rotational control within optical tweezers by use of a rotating aperture. Opt. Lett. 27, 743–745 (2002).

    ADS  Google Scholar 

  26. 26

    Kreysing, M. K. et al. The optical cell rotator. Opt. Express 16, 16984–16992 (2008).

    ADS  Google Scholar 

  27. 27

    Hoerner, F., Woerdemann, M., Mueller, S., Maier, B. & Denz, C. Full 3d translational and rotational optical control of multiple rod-shaped bacteria. J. Biophoton. 3, 468–475 (2010).

    Google Scholar 

  28. 28

    Higurashi, E., Sawada, R. & Ito, T. Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light. Phys. Rev. E 59, 3676–3681 (1999).

    ADS  Google Scholar 

  29. 29

    Galajda, P. & Ormos, P. Orientation of flat particles in optical tweezers by linearly polarized light. Opt. Express 11, 446–451 (2003).

    ADS  Google Scholar 

  30. 30

    Higurashi, E., Ukita, H., Tanaka, H. & Ohguchi, O. Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining. Appl. Phys. Lett. 64, 2209–2210 (1994).

    ADS  Google Scholar 

  31. 31

    Higurashi, E., Ohguchi, O., Tamamura, T., Ukita, H. & Sawada, R. Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps. J. Appl. Phys 82, 2773–2779 (1997).

    ADS  Google Scholar 

  32. 32

    Galajda, P. & Ormos, P. Complex micromachines produced and driven by light. Appl. Phys. Lett. 78, 249–251 (2001).

    ADS  Google Scholar 

  33. 33

    Galajda, P. & Ormos, P. Rotors produced and driven in laser tweezers with reversed direction of rotation. Appl. Phys. Lett. 80, 4653–4655 (2002).

    ADS  Google Scholar 

  34. 34

    Knöner, G. et al. Integrated optomechanical microelements. Opt. Express 15, 5521–5530 (2007).

    ADS  Google Scholar 

  35. 35

    Higurashi, E., Sawada, R. & Ito, T. Optically induced rotation of a trapped micro-object about an axis perpendicular to the laser beam axis. Appl. Phys. Lett. 72, 2951–2953 (1998).

    ADS  Google Scholar 

  36. 36

    Dienerowitz, M., Mazilu, M., Reece, P., Krauss, T. & Dholakia, K. Optical vortex trap for resonant confinement of metal nanoparticles. Opt. Express 16, 4991–4999 (2008).

    ADS  Google Scholar 

  37. 37

    Ashkin, A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992).

    ADS  Google Scholar 

  38. 38

    O'Neil, A. & Padgett, M. Axial and lateral trapping efficiency of Laguerre–Gaussian modes in inverted optical tweezers. Opt. Commun. 193, 45–50 (2001).

    ADS  Google Scholar 

  39. 39

    Bowman, R., Gibson, G. & Padgett, M. Particle tracking stereomicroscopy in optical tweezers: control of trap shape. Opt. Express 18, 11785–11790 (2010).

    ADS  Google Scholar 

  40. 40

    Gahagan, K. & Swartzlander, G. A. Optical vortex trapping of particles. Opt. Lett. 21, 827–829 (1996).

    ADS  Google Scholar 

  41. 41

    Prentice, P. et al. Manipulation and filtration of low index particles with holographic Laguerre–Gaussian optical trap arrays. Opt. Express 12, 593–600 (2004).

    ADS  Google Scholar 

  42. 42

    Lorenz, R. et al. Vortex-trap-induced fusion of femtoliter-volume aqueous droplets. Anal. Chem. 79, 224–228 (2007).

    Google Scholar 

  43. 43

    O'Neil, A., MacVicar, I., Allen, L. & Padgett, M. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002).

    ADS  Google Scholar 

  44. 44

    Garces-Chavez, V. et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys. Rev. Lett. 91, 093602 (2003).

    ADS  Google Scholar 

  45. 45

    Curtis, J. & Grier, D. Structure of optical vortices. Phys. Rev. Lett. 90, 133901 (2003).

    ADS  Google Scholar 

  46. 46

    Jesacher, A., Fürhapter, S., Maurer, C., Bernet, S. & Ritsch-Marte, M. Holographic optical tweezers for object manipulations at an air–liquid surface. Opt. Express 14, 6342–6352 (2006).

    ADS  Google Scholar 

  47. 47

    Leach, J. & Padgett, M. Observation of chromatic effects near a white-light vortex. New J. Phys. 5, 154 (2003).

    ADS  Google Scholar 

  48. 48

    Mariyenko, I., Strohaber, J. & Uiterwaal, C. Creation of optical vortices in femtosecond pulses. Opt. Express 13, 7599–7608 (2005).

    ADS  Google Scholar 

  49. 49

    Sztul, H., Kartazayev, V. & Alfano, R. Laguerre–Gaussian supercontinuum. Opt. Lett. 31, 2725–2727 (2006).

    ADS  Google Scholar 

  50. 50

    Wright, A., Girkin, J., Gibson, G., Leach, J. & Padgett, M. Transfer of orbital angular momentum from a super-continuum, white-light beam. Opt. Express 16, 9495–9500 (2008).

    ADS  Google Scholar 

  51. 51

    Tao, S., Yuan, X., Lin, J., Peng, X. & Niu, H. Fractional optical vortex beam induced rotation of particles. Optics Express 13, 7726–7731 (2005).

    ADS  Google Scholar 

  52. 52

    Courtial, J. & Padgett, M. Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle. Opt. Commun. 173, 269–274 (2000).

    ADS  Google Scholar 

  53. 53

    Hayasaki, Y., Itoh, M., Yatagai, T. & Nisida, N. Nonmechanical optical manipulation of microparticle using spatial light modulator. Opt. Rev. 6, 24–27 (1999).

    Google Scholar 

  54. 54

    Reicherter, M., Haist, T., Wagemann, E. & Tiziani, H. Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt. Lett. 24, 608–610 (1999).

    ADS  Google Scholar 

  55. 55

    Liesener, J., Reicherter, M., Haist, T. & Tiziani, H. Multi-functional optical tweezers using computer-generated holograms. Opt. Commun. 185, 77–82 (2000).

    ADS  Google Scholar 

  56. 56

    Curtis, J., Koss, B. & Grier, D. Dynamic holographic optical tweezers. Opt. Commun. 207, 169–175 (2002).

    ADS  Google Scholar 

  57. 57

    Grier, D. A revolution in optical manipulation. Nature. 424, 810–816 (2003).

    ADS  Google Scholar 

  58. 58

    Curtis, J. & Grier, D. Modulated optical vortices. Opt. Lett. 28, 872–874 (2003).

    ADS  Google Scholar 

  59. 59

    Eriksen, R., Rodrigo, P., Daria, V. & Gluckstad, J. Spatial light modulator-controlled alignment and spinning of birefringent particles optically trapped in an array. Appl. Opt. 42, 5107–5111 (2003).

    ADS  Google Scholar 

  60. 60

    Preece, D. et al. Independent polarisation control of multiple optical traps. Opt. Express 16, 15897–15902 (2008).

    ADS  Google Scholar 

  61. 61

    Roichman, Y., Grier, D. & Zaslavsky, G. Anomalous collective dynamics in optically driven colloidal rings. Phys. Rev. E 75, 020401 (2007).

    ADS  Google Scholar 

  62. 62

    Ladavac, K. & Grier, D. Colloidal hydrodynamic coupling in concentric optical vortices. Europhys. Lett. 70, 548–554 (2005).

    ADS  Google Scholar 

  63. 63

    Lee, S.-H. & Grier, D. Giant colloidal diffusivity on corrugated optical vortices. Phys. Rev. Lett. 96, 190601 (2006).

    ADS  Google Scholar 

  64. 64

    Ladavac, K. & Grier, D. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express 12, 1144–1149 (2004).

    ADS  Google Scholar 

  65. 65

    Pralle, A., Florin, E., Stelzer, E. & Horber, J. Local viscosity probed by photonic force microscopy. Appl. Phys. A 66, S71–S73 (1998).

    Google Scholar 

  66. 66

    Bishop, A., Nieminen, T., Heckenberg, N. & Rubinsztein-Dunlop, H. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett. 92, 198104 (2004).

    ADS  Google Scholar 

  67. 67

    Parkin, S. et al. Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation. Opt. Express 17, 21944–21955 (2009).

    ADS  Google Scholar 

  68. 68

    Vogel, R. et al. Synthesis and surface modification of birefringent vaterite microspheres. Langmuir 25, 11672–11679 (2009).

    Google Scholar 

  69. 69

    Parkin, S. J., Knöner, G., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Picoliter viscometry using optically rotated particles. Phys. Rev. E 76, 041507 (2007).

    ADS  Google Scholar 

  70. 70

    Leach, J. et al. Comparison of Faxen's correction for a microsphere translating or rotating near a surface. Phys. Rev. E 79, 026301 (2009).

    ADS  Google Scholar 

  71. 71

    Leach, J., Mushfique, H., di Leonardo, R., Padgett, M. & Cooper, J. An optically driven pump for microfluidics. Lab. Chip. 6, 735–739 (2006).

    Google Scholar 

  72. 72

    Jesacher, A., Maurer, C., Schwaighofer, A., Bernet, S. & Ritsch-Marte, M. Full phase and amplitude control of holographic optical tweezers with high efficiency. Opt. Express 16, 4479–4486 (2008).

    ADS  Google Scholar 

  73. 73

    Roichman, Y., Sun, B., Roichman, Y., Amato-Grill, J. & Grier, D. Optical forces arising from phase gradients. Phys. Rev. Lett. 100, 013602 (2008).

    ADS  Google Scholar 

  74. 74

    Lee, S., Roichman, Y. & Grier, D. Optical solenoid beams. Opt. Express 18, 6988–6993 (2010).

    ADS  Google Scholar 

  75. 75

    Baumgartl, J., Mazilu, M. & Dholakia, K. Optically mediated particle clearing using airy wavepackets. Nature Photon. 2, 675–678 (2008).

    ADS  Google Scholar 

  76. 76

    Daria, V. R., Palima, D. Z. & Gluckstad, J. Optical twists in phase and amplitude. Opt. Express 19, 476–481 (2011).

    ADS  Google Scholar 

  77. 77

    Asavei, T., Loke, V. L. Y., Nieminen, T. A., Heckenberg, N. R. & Rubinsztein-Dunlop, H. Optical paddle-wheel. Proc. SPIE 7400, 740020 (2009).

    ADS  Google Scholar 

  78. 78

    Lewittes, M., Arnold, S. & Oster, G. Radiometric levitation of micron sized spheres. Appl. Phys. Lett. 40, 455–457 (1982).

    ADS  Google Scholar 

  79. 79

    Shvedov, V., Desyatnikov, A., Rode, A., Krolikowski, W. & Kivshar, Y. Optical guiding of absorbing nanoclusters in air. Opt. Express 17, 5743–5757 (2009).

    ADS  Google Scholar 

  80. 80

    Shvedov, V. et al. Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010).

    ADS  Google Scholar 

  81. 81

    Shvedov, V. et al. Selective trapping of multiple particles by volume speckle field. Opt. Express 18, 3137–3142 (2010).

    ADS  Google Scholar 

  82. 82

    O'Holleran, K., Dennis, M. R., Flossmann, F. & Padgett, M. J. Fractality of light's darkness. Phys. Rev. Lett. 100, 053902 (2008).

    ADS  Google Scholar 

  83. 83

    Furhapter, S., Jesacher, A., Bernet, S. & Ritsch-Marte, M. Spiral phase contrast imaging in microscopy. Opt. Express 13, 689–694 (2005).

    ADS  Google Scholar 

  84. 84

    Swartzlander, G. et al. Astronomical demonstration of an optical vortex coronagraph. Opt. Express 16, 10200–10207 (2008).

    ADS  Google Scholar 

  85. 85

    Dholakia, K., Simpson, N., Padgett, M. & Allen, L. Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A 54, R3742–R3745 (1996).

    ADS  Google Scholar 

  86. 86

    Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    ADS  Google Scholar 

  87. 87

    Gibson, G. et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express 12, 5448–5456 (2004).

    ADS  Google Scholar 

  88. 88

    Thidé, B. et al. Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 99, 087701 (2007).

    ADS  Google Scholar 

Download references

Acknowledgements

M.J.P. acknowledges financial support from the Royal Society. Figures 24 were produced with TIM, a custom Java raytracer (http://arxiv.org/abs/1101.3861v1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miles Padgett.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Padgett, M., Bowman, R. Tweezers with a twist. Nature Photon 5, 343–348 (2011). https://doi.org/10.1038/nphoton.2011.81

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing