Abstract

Optical transmission systems with terabit per second (Tbit s−1) single-channel line rates no longer seem to be too far-fetched. New services such as cloud computing, three-dimensional high-definition television and virtual-reality applications require unprecedented optical channel bandwidths. These high-capacity optical channels, however, are fed from lower-bitrate signals. The question then is whether the lower-bitrate tributary information can viably, energy-efficiently and effortlessly be encoded to and extracted from terabit per second data streams. We demonstrate an optical fast Fourier transform scheme that provides the necessary computing power to encode lower-bitrate tributaries into 10.8 and 26.0 Tbit s−1 line-rate orthogonal frequency-division multiplexing (OFDM) data streams and to decode them from fibre-transmitted OFDM data streams. Experiments show the feasibility and ease of handling terabit per second data with low energy consumption. To the best of our knowledge, this is the largest line rate ever encoded onto a single light source.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Towards terabit ethernet. Optical Fiber Communication Conference (OFC) (2008).

  2. 2.

    Single wavelength channel 10.2 Tb/s TDM-data capacity using 16-QAM and coherent detection. Optical Fiber Communication Conference (OFC) PDPA9 (2011).

  3. 3.

    101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using Pilot-based phase noise mitigation. Optical Fiber Communication Conference (OFC) PDPB5 (2011).

  4. 4.

    Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell Syst. Tech. J. 45, 1775–1796 (1966).

  5. 5.

    & OFDM for Optical Communications (Academic Press, 2009).

  6. 6.

    Single source optical OFDM transmitter and optical FFT receiver demonstrated at line rates of 5.4 and 10.8 Tbit/s. Optical Fiber Communication Conference (OFC) PDPC1 (2010).

  7. 7.

    , & Generation, transmission and coherent detection of 11.2 Tb/s (112×100 Gb/s) single source optical OFDM superchannel. Optical Fiber Communication Conference (OFC) PDPA6 (2011).

  8. 8.

    , , & Long-haul transmission of 1652.5 Gbits/s polarization-division-multiplexed OFDM enabled by MIMO processing. J. Opt. Netw. 7, 173–182 (2008).

  9. 9.

    , , , & 1-Tb/s Single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access. Optical Express 17, 9421–9427 (2009).

  10. 10.

    101.5 Gbit/s Real-time OFDM transmitter with 16QAM modulated subcarriers. Optical Fiber Communication Conference (OFC) OWE5 (2011).

  11. 11.

    , & First experimental demonstration of 6 Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading. Opt. Express 17, 19727–19738 (2009).

  12. 12.

    , , & Real-time reception of multi-gigabit coherent optical OFDM signals. Opt. Express 17, 7985–7992 (2009).

  13. 13.

    & Spectral density enhancement using coherent WDM. IEEE Photon. Technol. Lett. 17, 504–506 (2005).

  14. 14.

    et al. 30×100-Gb/s All-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes. In 33rd European Conference and Exhibition of Optical Communication, PDP1.7 (2007).

  15. 15.

    Simple all-optical FFT scheme enabling Tbit/s real-time signal processing. Opt. Express 18, 9324–9340 (2010).

  16. 16.

    Discrete Fourier transforms by single-mode star networks. Opt. Lett. 12, 63–65 (1987).

  17. 17.

    Fiber wavelet filters. IEEE J. Quantum Electron. 38, 1420–1427 (2002).

  18. 18.

    , , & Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160 Gbit/s signal reception. Electron. Lett. 46, 575–576 (2010).

  19. 19.

    Dual-polarization 2×2 IFFT/FFT optical signal processing for 100-Gb/s QPSK-PDM all-optical OFDM. Optical Fiber Communication Conference (OFC) OTuM4 (2009).

  20. 20.

    , , & Optical OFDM demultiplexer using silica PLC based optical FFT circuit. Optical Fiber Communication Conference (OFC) OWO3 (2009).

  21. 21.

    , & Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz. Optical Fiber Communication Conference (OFC) ThD1 (2002).

  22. 22.

    Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers. Opt. Express 18, 14129–14143 (2010).

  23. 23.

    Software-defined multi-format transmitter with real-time signal processing for up to 160 Gbit/s. Signal Processing in Photonic Communications (SPPCOM) SPTuC4 (2010).

  24. 24.

    Real-time software-defined multiformat transmitter generating 64QAM at 28 GBd. IEEE Photon. Technol. Lett. 22, 1601–1603 (2010).

  25. 25.

    & Fundamentals of Wireless Communication (Cambridge Univ. Press, 2005).

  26. 26.

    , , & Effective evaluation of link quality using error vector magnitude techniques. Wireless Communications Conference, 89–94. IEEE (1997).

  27. 27.

    , & On the extended relationships among EVM, BER and SNR as performance metrics. In Proc. 4th International Conference on Electrical and Computer Engineering (ICECE), 408–411 (2006).

  28. 28.

    Recent progress in forward error correction and its interplay with transmission impairments. IEEE J. Sel. Topics Quantum Electron. 12, 544–554 (2006).

  29. 29.

    Fiber-Based Dispersion Compensation (Springer, 2007).

  30. 30.

    , , , & PMD tolerance of 288 Gbit/s coherent WDM and transmission over unrepeated 124 km of field-installed single mode optical fiber. Opt. Express 18, 13908–13914 (2010).

  31. 31.

    & Error vector magnitude to SNR conversion for nondata-aided receivers. IEEE Trans. Wireless Commun. 8, 2694–2704 (2009)

Download references

Acknowledgements

The authors acknowledge support from the Karlsruhe School of Optics & Photonics (KSOP), the Center for Functional Nanostructures (CFN), the German Research Foundation (DFG), the BMBF project CONDOR, the Xilinx University Program (XUP), the Agilent University Relations Program, Centellax, Alcatel-Lucent Germany, the European network of excellence EuroFOS and the EU research project ACCORDANCE.

Author information

Affiliations

  1. Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

    • D. Hillerkuss
    • , R. Schmogrow
    • , T. Schellinger
    • , M. Jordan
    • , M. Winter
    • , G. Huber
    • , T. Vallaitis
    • , R. Bonk
    • , P. Kleinow
    • , F. Frey
    • , M. Roeger
    • , S. Koenig
    • , A. Ludwig
    • , A. Marculescu
    • , J. Li
    • , M. Hoh
    • , M. Dreschmann
    • , J. Meyer
    • , M. Huebner
    • , J. Becker
    • , C. Koos
    • , W. Freude
    •  & J. Leuthold
  2. Finisar Corporation, Nes Ziona, Israel

    • S. Ben Ezra
    •  & N. Narkiss
  3. Agilent Technologies, Boeblingen, Germany

    • B. Nebendahl
  4. Optoelectronics Research Centre, University of Southampton, Southampton, United Kingdom

    • F. Parmigiani
    •  & P. Petropoulos
  5. Time-Bandwidth Products AG, Zurich, Switzerland

    • B. Resan
    • , A. Oehler
    •  & K. Weingarten
  6. Micram Microelectronic GmbH, Bochum, Germany

    • T. Ellermeyer
    •  & J. Lutz
  7. Department of Electronics and Circuits, Saarland University, Saarbruecken, Germany

    • M. Moeller

Authors

  1. Search for D. Hillerkuss in:

  2. Search for R. Schmogrow in:

  3. Search for T. Schellinger in:

  4. Search for M. Jordan in:

  5. Search for M. Winter in:

  6. Search for G. Huber in:

  7. Search for T. Vallaitis in:

  8. Search for R. Bonk in:

  9. Search for P. Kleinow in:

  10. Search for F. Frey in:

  11. Search for M. Roeger in:

  12. Search for S. Koenig in:

  13. Search for A. Ludwig in:

  14. Search for A. Marculescu in:

  15. Search for J. Li in:

  16. Search for M. Hoh in:

  17. Search for M. Dreschmann in:

  18. Search for J. Meyer in:

  19. Search for S. Ben Ezra in:

  20. Search for N. Narkiss in:

  21. Search for B. Nebendahl in:

  22. Search for F. Parmigiani in:

  23. Search for P. Petropoulos in:

  24. Search for B. Resan in:

  25. Search for A. Oehler in:

  26. Search for K. Weingarten in:

  27. Search for T. Ellermeyer in:

  28. Search for J. Lutz in:

  29. Search for M. Moeller in:

  30. Search for M. Huebner in:

  31. Search for J. Becker in:

  32. Search for C. Koos in:

  33. Search for W. Freude in:

  34. Search for J. Leuthold in:

Contributions

D.H. developed the concept, designed and performed the experiment, implemented the 16-QAM transmitter, analysed data and wrote the paper. R.S. implemented the 16-QAM transmitter, performed the experiment and wrote the paper. T.S. and M.J. implemented the comb source and performed the experiment. M.W. performed simulations and wrote the paper. G.H., T.V., R.B., P.K., F.F., M.R., S.K., A.M., J. Li, M.H., M.D., J.M., A.L. and B.N. performed the experiment. S.B.-E., N.N., B.N., F.P., P.P., B.R., A.O., K.W., T.E., J. Lutz and M.M. developed vital subsystems for the experiment and gave technical support. M.H. and J.B. supported the development of the 16-QAM transmitters. C.K., W.F. and J. Leuthold developed the concept, designed the experiment and wrote the paper.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to D. Hillerkuss or W. Freude or J. Leuthold.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nphoton.2011.74

Further reading