Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Focusing and compression of ultrashort pulses through scattering media


Light scattering in inhomogeneous media induces wavefront distortions that pose an inherent limitation in many optical applications. Examples where this occurs include microscopy, nanosurgery and astronomy. In recent years, ongoing efforts have made the correction of spatial distortions possible using wavefront-shaping techniques. However, when ultrashort pulses are used, scattering also induces temporal distortions, which hinder the use of such pulses in nonlinear processes such as multiphoton microscopy and quantum control experiments. Here, we show that correction of both spatial and temporal distortions can be achieved by manipulating only the spatial degrees of freedom of the incident wavefront. By optimizing a nonlinear signal, we demonstrate spatiotemporal focusing and compression of chirped ultrashort pulses through scattering media, and refocusing in both space and time of 100 fs pulses through thick brain and bone samples. Our results open up new possibilities for optical manipulation and nonlinear imaging in scattering media.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spatiotemporal focusing by optimizing 2PF: spatial characterization.
Figure 2: Spatiotemporal characterization of the scattered and optimized fields shown in Fig. 1, demonstrating pulse compression by spatial wavefront shaping.
Figure 3: Mechanism for temporal compression using only spatial degrees of freedom and random scattering.
Figure 4: Refocusing 100 fs TL pulses through 1-mm-thick brain tissue.
Figure 5: Spatiotemporal refocusing of 100 fs pulses through 500-µm-thick bone sample.


  1. 1

    Sebbah, P. Waves and Imaging Through Complex Media (Kluwer Academic Publishers, 2001).

    Book  Google Scholar 

  2. 2

    Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2007).

    Google Scholar 

  3. 3

    Tal, E. & Silberberg, Y. Transformation from an ultrashort pulse to a spatiotemporal speckle by a thin scattering surface. Opt. Lett. 31, 3529–3531 (2006).

    ADS  Article  Google Scholar 

  4. 4

    Bruce, N. C. et al. Investigation of the temporal spread of an ultrashort light pulse on transmission through a highly scattering medium. Appl. Opt. 34, 5823–5828 (1995).

    ADS  Article  Google Scholar 

  5. 5

    Webster, M. A., Gerke, T. D., Weiner, A. M. & Webb, K. J. Spectral and temporal speckle field measurements of a random medium. Opt. Lett. 29, 1491–1493 (2004).

    ADS  Article  Google Scholar 

  6. 6

    Johnson, P. M. et al. Time-resolved pulse propagation in a strongly scattering material. Phys. Rev. E 68, 016604 (2003).

    ADS  Article  Google Scholar 

  7. 7

    Szmacinski, H., Gryczynski, I. & Lakowicz, J. R. Spatially localized ballistic two-photon excitation in scattering media. Biospectroscopy 4, 303–310 (1998).

    Article  Google Scholar 

  8. 8

    Dela Cruz, J. M., Pastirk, I., Comstock, M., Lozovoy, V. V. & Dantus, M. Use of coherent control methods through scattering biological tissue to achieve functional imaging. Proc. Natl Acad. Sci. USA 101, 16996–17001 (2004).

    ADS  Article  Google Scholar 

  9. 9

    Tyson, R. K. Principles of Adaptive Optics 2nd edn (Academic Press, 1998).

    Google Scholar 

  10. 10

    Nature Photon. Technology focus: Adaptive optics. Nature Photon. 5, 15–28 (2011).

  11. 11

    Booth, M. J. Adaptive optics in microscopy. Phil.Trans. R. Soc. A 365, 2829–2843 (2007).

    ADS  Article  Google Scholar 

  12. 12

    Rueckel, M., Mack-Bucher, J. A. & Denk, W. Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing. Proc. Natl Acad. Sci. USA 103, 17137–17142 (2006).

    ADS  Article  Google Scholar 

  13. 13

    Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).

    ADS  Article  Google Scholar 

  14. 14

    Vellekoop, I. M., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

    ADS  Article  Google Scholar 

  15. 15

    Vellekoop, I. M., Lagendijk, A. & Mosk, A. P. Exploiting disorder for perfect focusing. Nature Photon. 4, 320–322 (2010).

    Article  Google Scholar 

  16. 16

    Vellekoop, I. M. & Aegerter, C. M. Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. 35, 1245–1247 (2010).

    ADS  Article  Google Scholar 

  17. 17

    Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    ADS  Article  Google Scholar 

  18. 18

    Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nature Commun. 1, 81. doi:10.1038/ncomms1078 (2010).

    ADS  Article  Google Scholar 

  19. 19

    Čižmár, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).

    ADS  Article  Google Scholar 

  20. 20

    Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nature Photon. 2, 110–115 (2008).

    ADS  Article  Google Scholar 

  21. 21

    Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    ADS  Article  Google Scholar 

  22. 22

    Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J. & Charpak, S. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J. Neurosci. Methods 111, 29–37 (2001).

    Article  Google Scholar 

  23. 23

    Rabitz, H., de Vivie-Riedle, R., Motzkus, M. & Kompa, K. Whither the future of controlling quantum phenomena? Science 288, 824–828 (2000).

    ADS  Article  Google Scholar 

  24. 24

    Assion, A. et al. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses Science 30, 919–922 (1998).

    ADS  Article  Google Scholar 

  25. 25

    Pearson, B. J., White, J. L., Weinacht, T. C. & Bucksbaum, P. H. Coherent control using adaptive learning algorithms. Phys. Rev. A 63, 063412 (2001).

    ADS  Article  Google Scholar 

  26. 26

    Stockman, M. I., Faleev, S. V. & Bergman, D. J. Coherent control of femtosecond energy localization in nanosystems. Phys. Rev. Lett. 88, 067402 (2002).

    ADS  Article  Google Scholar 

  27. 27

    Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007).

    ADS  Article  Google Scholar 

  28. 28

    Oron, D., Dudovich, N. & Silberberg, Y. All-optical processing in coherent nonlinear spectroscopy. Phys. Rev. A 70, 023415 (2004).

    ADS  Article  Google Scholar 

  29. 29

    Fink, M. Time reversed acoustics. Phys. Today 50, 34–40 (1997).

    Google Scholar 

  30. 30

    Lerosey, G. et al. Time reversal of electromagnetic waves. Phys. Rev. Lett. 92, 193904 (2004).

    ADS  Article  Google Scholar 

  31. 31

    Derode, A. et al. Taking advantage of multiple scattering to communicate with time-reversal antennas. Phys. Rev. Lett. 90, 014301 (2003).

    ADS  Article  Google Scholar 

  32. 32

    Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    ADS  Article  Google Scholar 

  33. 33

    McCabe, D. J. et al. Shaping speckles: spatio-temporal focussing of an ultrafast pulse through a multiply scattering medium. arXiv:1101.0976 (2011).

  34. 34

    Jiang, Y., Narushima, T. & Okamoto, H. Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nature Phys. 6, 1005–1009 (2010).

    ADS  Article  Google Scholar 

  35. 35

    Andrasfalvy, B. K., Zemelman, B. V., Tang, J. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl Acad. Sci. USA 107, 11981–11986 (2010).

    ADS  Article  Google Scholar 

  36. 36

    Vellekoop, I. M. & Mosk, A. P. Phase control algorithms for focusing light through turbid media. Opt. Commun. 281, 3071–3080 (2008).

    ADS  Article  Google Scholar 

  37. 37

    Diels, J. C., Fontaine, J. J., McMichael, I. C. & Simoni, F. Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy. Appl. Opt. 24, 1270–1282 (1985).

    ADS  Article  Google Scholar 

  38. 38

    Yelin, D., Meshulach, D. & Silberberg, Y. Adaptive femtosecond pulse compression. Opt. Lett. 22, 1793–1795 (1997).

    ADS  Article  Google Scholar 

  39. 39

    Lemoult, F., Lerosey, G., de Rosny, J. & Fink, M. Manipulating spatiotemporal degrees of freedom of waves in random media. Phys. Rev. Lett. 103, 173902 (2009).

    ADS  Article  Google Scholar 

  40. 40

    Aulbach, J., Gjonaj, B., Johnson, P. M., Mosk, A. P. & Lagendijk, A. Control of light transmission through opaque scattering media in space and time. Phys. Rev. Lett. 106, 103901 (2011).

    ADS  Article  Google Scholar 

  41. 41

    Small, E., Katz, O., Eshel, Y., Silberberg, Y. & Oron, D. Spatio-temporal X-wave. Opt. Express 17, 18659–18668 (2009).

    ADS  Article  Google Scholar 

  42. 42

    Oron, D., Tal, E. & Silberberg, Y. Scanningless depth-resolved microscopy. Opt. Express 13, 1468–1476 (2005).

    ADS  Article  Google Scholar 

  43. 43

    Wilt, B. A. et al. Advances in light microscopy for neuroscience. Annu. Rev. Neurosci. 32, 435–506 (2009).

    Article  Google Scholar 

  44. 44

    Cui, M. A high speed wavefront determination method based on spatial frequency modulations for focusing light through random scattering media. Opt. Express 19, 2989–2995 (2011).

    ADS  Article  Google Scholar 

  45. 45

    Hsieh, C.-L., Pu, Y., Grange, R. & Psaltis, D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010).

    ADS  Article  Google Scholar 

Download references


The authors thank E. Korkotian, G. Grigoryan and M. Segal for brain samples, N. Reznikov, J.M. Levitt and S. Weiner for the bone sample, R. Ozeri's group for the EMCCD camera, M. Covo for graphical design and D. Oron for fruitful discussions. This work was supported by grants from the Israel Science Foundation, the Israel Ministry of Science and the Crown Photonics Center.

Author information




O.K. conceived the idea. O.K., Y.B., E.S. and Y.S. designed the experiments. O.K., E.S. and Y.B. performed the experiments, analysed the data and carried out numerical simulations. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Yaron Silberberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary movie (MOV 2794 kb)

Supplementary information

Supplementary information (PDF 221 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Katz, O., Small, E., Bromberg, Y. et al. Focusing and compression of ultrashort pulses through scattering media. Nature Photon 5, 372–377 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing