Plasmon nano-optical tweezers

Abstract

Conventional optical tweezers, formed at the diffraction-limited focus of a laser beam, have become a powerful and flexible tool for manipulating micrometre-sized objects. Extending optical trapping down to the nanometre scale would open unprecedented opportunities in many fields of science, where such nano-optical tweezers would allow the ultra-accurate positioning of single nano-objects. Among the possible strategies, the ability of metallic nanostructures to control light at the subwavelength scale can be exploited to engineer such nano-optical traps. This Review summarizes the recent advances in the emerging field of plasmon-based optical trapping and discusses the details of plasmon tweezers along with their potential applications to bioscience and quantum optics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Conventional optical trapping versus surface plasmon trapping.
Figure 2: SP-based microtrapping.
Figure 3: Antenna trapping.
Figure 4: Plasmonic nanotrapping based on a trap–specimen interaction.
Figure 5: SIBA trapping.
Figure 6: Future outlook and applications.

References

  1. 1

    Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    ADS  Article  Google Scholar 

  2. 2

    Grier, D. A revolution in optical manipulation. Nature 424, 810–816 (2003).

    ADS  Article  Google Scholar 

  3. 3

    Neuman K. C. & Block S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    ADS  Article  Google Scholar 

  4. 4

    Dholakia, K. & Reece, P. Optical micromanipulation takes hold. Nano Today 1, 18–27 (2006).

    Article  Google Scholar 

  5. 5

    Vigoureux, J. M. & Courjon, D. Detection of nonradiative fields in the light of the Heisenberg uncertainty principle and the Rayleigh criterion. Appl. Opt. 31, 3170–3177 (1992).

    ADS  Article  Google Scholar 

  6. 6

    Novotny, L. & Hecht, B. Principles of Nano-Optics Ch. 4 (Cambridge Univ., 2006).

    Google Scholar 

  7. 7

    Raether, H. Excitation of Plasmons and Interband Transitions by Electrons Ch. 1 (Springer, 1980).

    Google Scholar 

  8. 8

    Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters Ch. 2 (Springer, 1997).

    Google Scholar 

  9. 9

    Maier, S. Plasmonics: Fundamentals and Applications Ch. 5 (Springer, 2007).

    Google Scholar 

  10. 10

    Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    ADS  Article  Google Scholar 

  11. 11

    Ozbay, E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    ADS  Article  Google Scholar 

  12. 12

    Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    ADS  Article  Google Scholar 

  13. 13

    Shalaev, V. M. & Sarychev, A. K. Nonlinear optics of random metal–dielectric films. Phys. Rev. B 57, 13265–13288 (1998).

    ADS  Article  Google Scholar 

  14. 14

    Gresillon, S. et al. Experimental observation of localized optical excitations in random metal–dielectric films. Phys. Rev. Lett. 82, 4520–4523 (1999).

    ADS  Article  Google Scholar 

  15. 15

    Li, K., Stockman, M. I. & Bergman, D. J. Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227402 (2003).

    ADS  Article  Google Scholar 

  16. 16

    Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    ADS  Article  Google Scholar 

  17. 17

    Kawata, S. & Sugiura, T. Movement of micrometer-sized particles in the evanescent field of a laser beam. Opt. Lett. 17, 772–774 (1992).

    ADS  Article  Google Scholar 

  18. 18

    Girard, C., Dereux, A. & Martin, O. J. F. Theoretical analysis of light-inductive forces in scanning probe microscopy. Phys. Rev. B 49, 13872–13881 (1994).

    ADS  Article  Google Scholar 

  19. 19

    Dereux, A., Girard, C., Martin O. J. F. & Devel, M. Optical binding in scanning probe microscopy. Europhys. Lett. 26, 37–42 (1994).

    ADS  Article  Google Scholar 

  20. 20

    Kawata, S. & Tani, T. Optically driven Mie particles in an evanescent field along a channelled waveguide. Opt. Lett. 21, 1768–1770 (1996).

    ADS  Article  Google Scholar 

  21. 21

    Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).

    ADS  Article  Google Scholar 

  22. 22

    Martin, O. J. F. & Girard, C. Controlling and tuning strong optical field gradients at a local probe microscope tip apex. Appl. Phys. Lett. 70, 705–707 (1997).

    ADS  Article  Google Scholar 

  23. 23

    Okamoto, K. & Kawata, S. Radiation force exerted on subwavelength particles near a nanoaperture. Phys. Rev. Lett. 83, 4534–4537 (1999).

    ADS  Article  Google Scholar 

  24. 24

    Chaumet, P., Rahmani, A. & Nieto-Vesperinas, M. Optical trapping and manipulation of nano-objects with an apertureless probe. Phys. Rev. Lett. 88, 123601 (2002).

    ADS  Article  Google Scholar 

  25. 25

    Nieto-Vesperinas, M., Chaumet, P. & Rahmani, A. Near field photonic forces. Phil. Trans. R. Soc. A 362, 719–737 (2004).

    ADS  Article  Google Scholar 

  26. 26

    Gu, M., Haumonte, J. B., Micheau Y., Chon, J. W. M. & Gan, X. Laser trapping and manipulation under focused evanescent wave illumination. Appl. Phys. Lett. 84, 4236–4238 (2004).

    ADS  Article  Google Scholar 

  27. 27

    Cizmar, T., Garceís-Chávez, V., Dholakia, K. & Zemaánek, P. Optical conveyor belt for delivery of submicron objects. Appl. Phys. Lett. 86, 174101 (2005).

    ADS  Article  Google Scholar 

  28. 28

    Quidant, R., Petrov, D. & Badenes, G. Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field. Opt. Lett. 30, 1009–1011 (2005).

    ADS  Article  Google Scholar 

  29. 29

    Garcés-Chávez, V. et al. Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys. Rev. B 73, 085417 (2006).

    ADS  Article  Google Scholar 

  30. 30

    Volpe, G., Quidant, R., Badenes, G. & Petrov, D. Surface plasmon radiation forces. Phys. Rev. Lett. 96, 238101 (2006).

    ADS  Article  Google Scholar 

  31. 31

    Righini, M., Zelenina, A. S., Girard, C. & Quidant, R. Parallel and selective trapping in a patterned plasmonic landscape. Nature Phys. 3, 477–480 (2007).

    ADS  Article  Google Scholar 

  32. 32

    Righini, M., Volpe, G., Girard, C., Petrov, D. & Quidant, R. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. Phys. Rev. Lett. 100, 183604 (2008).

    Article  Google Scholar 

  33. 33

    Huang, L., Maerkl, S. J. & Martin, O. J. F. Integration of plasmonic trapping in a microfluidic environment. Opt. Express 17, 6018–6024 (2009).

    ADS  Article  Google Scholar 

  34. 34

    Mühlschlegel, P., Eisler, H. J., Martin, O. J. F., Hecht, B. & Pohl, D. W. Resonant optical antennas. Science 308, 1607–1609 (2006).

    ADS  Article  Google Scholar 

  35. 35

    Schuck, P. J., Fromm, D. P., Sundaramurthy, A., Kino, G. S. & Moerner, W. E. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 94, 017402 (2005).

    ADS  Article  Google Scholar 

  36. 36

    Aizpurua, J. et al. Optical properties of coupled metallic nanorods for field-enhanced spectroscopy. Phys. Rev. B 71, 235420 (2005).

    ADS  Article  Google Scholar 

  37. 37

    Tang, L. et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nature Photon. 2, 226–229 (2008).

    Article  Google Scholar 

  38. 38

    Kinkhabwala, A. et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nature Photon. 3, 654–657 (2009).

    ADS  Article  Google Scholar 

  39. 39

    Acimovics, S., Kreuzer, M. P., Gonzalez, M. U. & Quidant, R. Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3, 1231–1237 (2009).

    Article  Google Scholar 

  40. 40

    Garcia-Parajo, M. F. Optical antennas focus in on biology. Nature Photon. 2, 201–203 (2008).

    ADS  Article  Google Scholar 

  41. 41

    Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement. Nature 453, 757–760 (2008).

    ADS  Article  Google Scholar 

  42. 42

    Xu, H. & Käll, M. Surface-plasmon-enhanced optical forces in silver nanoaggregates. Phys. Rev. Lett. 89, 246802 (2002).

    ADS  Article  Google Scholar 

  43. 43

    Grigorenko, A. N., Roberts, N. W., Dickinson, M. R. & Zhang, Y. Nanometric optical tweezers based on nanostructured substrates. Nature Photon. 2, 365–370 (2008).

    ADS  Article  Google Scholar 

  44. 44

    Righini, M. et al. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. Nano Lett. 9, 3387–3391 (2009).

    ADS  Article  Google Scholar 

  45. 45

    Visscher, K., Gross, S. P. & Block, S. M. Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Top. Quant. Electron. 2, 1066–1076 (1996).

    ADS  Article  Google Scholar 

  46. 46

    Ashkin, A., Dziedzic, J. M. & Yamane, T. Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987).

    ADS  Article  Google Scholar 

  47. 47

    Creely, C., Volpe, G., Singh, G., Soler, M. & Petrov, P. Raman imaging of floating cells. Opt. Express 13, 6105–6110 (2005).

    ADS  Article  Google Scholar 

  48. 48

    Rao, S., Bálint, S., Cossins, B., Guallar, V. & Petrov, D. Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers. Biophys. J. 96, 209–216 (2009).

    Article  Google Scholar 

  49. 49

    Li, T., Kheifets, S., Medellin, D. & Raizen, M. G. Measurement of the instantaneous velocity of a Brownian particle. Science 324, 1673–1675 (2010).

    ADS  Article  Google Scholar 

  50. 50

    Ashkin, A. & Dziedzic, J. M. Feedback stabilization of optically levitated particles. Appl. Phys. Lett. 30, 202–204 (1977).

    ADS  Article  Google Scholar 

  51. 51

    Simmons, R. M., Finer, J. T., Chu, S. & Spudich, J. A. Quantitative measurements of force and displacement using an optical trap. Biophys. J. 70, 1813–1822 (1996).

    ADS  Article  Google Scholar 

  52. 52

    Wallin, A. E., Ojala, H., Hæggström, E. & Tuma, R. Stiffer optical tweezers through real-time feedback control. Appl. Phys. Lett. 92, 224104 (2008).

    ADS  Article  Google Scholar 

  53. 53

    Homola, J., Yee, S. S. & Gauglitz, G. Surface plasmon resonance sensors: Review. Sensor. Actuator. B 54, 3–15 (1999).

    Article  Google Scholar 

  54. 54

    Raschke, G. et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano. Lett. 3, 935–938 (2003).

    ADS  Article  Google Scholar 

  55. 55

    Larsson, E. M., Alegret, J., Kall, M. & Sutherland, D. S. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett. 7, 1256–1263 (2007).

    ADS  Article  Google Scholar 

  56. 56

    Jonsson, M. P., Jonsson, P., Dahlin, A. B. & Hook, F. Supported lipid bilayer formation and lipid–membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano Lett. 7, 3462–3468 (2007).

    ADS  Article  Google Scholar 

  57. 57

    Chen, S., Svedendahl, M., Käll, M., Gunnarsson, L. & Dmitriev, A. Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. Nanotechnology 20, 434015 (2009).

    ADS  Article  Google Scholar 

  58. 58

    Yang, A. H. J. et al. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457, 71–75 (2009).

    ADS  Article  Google Scholar 

  59. 59

    Sainidou, R. & García de Abajo, F. J. Optically tunable surfaces with trapped particles in microcavities. Phys. Rev. Lett. 101, 136802 (2008).

    ADS  Article  Google Scholar 

  60. 60

    Zhang, W., Huang, L., Santschi, C. & Martin, O. J. F. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 10, 1006–1011 (2010).

    ADS  Article  Google Scholar 

  61. 61

    Juan, M. L., Gordon, R., Pang, Y., Eftekhari, F. & Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nature Phys. 5, 915–919 (2009).

    ADS  Article  Google Scholar 

  62. 62

    Genet, C. & Ebbesen, T. W. Light in tiny holes. Nature 445, 39–46 (2007).

    ADS  Article  Google Scholar 

  63. 63

    García-Vidal, F. J., Moreno, E., Porto, J. A. & Martín-Moreno, L. Transmission of light through a single rectangular hole. Phys. Rev. Lett. 95, 103901 (2005).

    ADS  Article  Google Scholar 

  64. 64

    García-Vidal, F. J., Martín-Moreno, L., Moreno, E., Kumar, L. K. S. & Gordon, R. Transmission of light through a single rectangular hole in real metal. Phys. Rev. B 74, 153411 (2006).

    ADS  Article  Google Scholar 

  65. 65

    García de Abajo, F. Light transmission through a single cylindrical hole in a metallic film. Opt. Express 10, 1475–1484 (2002).

    ADS  Article  Google Scholar 

  66. 66

    Kwak, E. S. et al. Optical trapping with integrated near-field apertures. J. Phys. Chem. B 108, 13607–13612 (2004).

    Article  Google Scholar 

  67. 67

    Baev, A. et al. Laser nanotrapping and manipulation of nanoscale objects using subwavelength apertured plasmonic media. J. Appl. Phys. 103, 084316 (2008).

    ADS  Article  Google Scholar 

  68. 68

    Blanco, L. A. & Nieto-Vesperinas, M. Optical forces near subwavelength apertures in metal discs. J. Opt. A 9, 235–8 (2007).

    ADS  Article  Google Scholar 

  69. 69

    Enoch, S., Quidant, R. & Badenes, G. Optical sensing based on plasmon coupling in nanoparticle arrays. Opt. Express 12, 3422–3427 (2004).

    ADS  Article  Google Scholar 

  70. 70

    Jain, P. K. & El-Sayed, M. A. Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. Nano Lett. 8, 4347–4352 (2008).

    ADS  Article  Google Scholar 

  71. 71

    Verellen, N. et al. Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett. 9, 1663–1667 (2009).

    ADS  Article  Google Scholar 

  72. 72

    Liu, N. et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett. 10, 1103–1107 (2010).

    ADS  Article  Google Scholar 

  73. 73

    Evlyukhin, A. B. et al. Detuned electrical dipoles for plasmonic sensing. Nano Lett. 10, 4571–4577 (2010).

    ADS  Article  Google Scholar 

  74. 74

    Balykin, V. I., Letokhov, V. S. & Klimov, V. V. Atom nano-optics. Opt. Photon. News 16, 44–48 (2005).

    ADS  Article  Google Scholar 

  75. 75

    Klimov, V. V., Sekatskii, S. K. & Dietler, G. Laser nanotraps and nanotweezers for cold atoms: 3D gradient dipole force trap in the vicinity of scanning near-field optical microscope tip. Opt. Commun. 259, 883–887 (2006).

    ADS  Article  Google Scholar 

  76. 76

    Chang, D. E. et al. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett. 103, 123004 (2009).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Spanish Ministry of Sciences under grants FIS2010-14834 and CSD2007-046-NanoLight.es, the European Community's Seventh Framework Programme under grant FP7-ICT-248835 (SPEDOC) and Fundació privada CELLEX

Author information

Affiliations

Authors

Corresponding author

Correspondence to Romain Quidant.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Juan, M., Righini, M. & Quidant, R. Plasmon nano-optical tweezers. Nature Photon 5, 349–356 (2011). https://doi.org/10.1038/nphoton.2011.56

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing