Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Diamond photonics

Abstract

Diamond, a material marvelled for its strength, beauty and perfection, was first used to polish stone axes in Neolithic times. This most ancient of materials is now being touted by many as the ideal platform for quantum-age technologies. In this Review, we describe how the properties of diamond match the requirements of the 'second quantum revolution'. We also discuss recent progress in the development of diamond — and particularly diamond colour centres — for transforming quantum information science into practical quantum information technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: NV centres in nanodiamond and single-crystal diamond.
Figure 2: Single-crystal diamond photonic structures.
Figure 3: Classical applications of diamond.
Figure 4: 3D STED images of NV centres in bulk diamond.
Figure 5: Diamond nanophotonic components.
Figure 6: Plasmonics with NV centres in diamond.

References

  1. 1

    Balmer, R. S. et al. Chemical vapour deposition synthetic diamond: Materials, technology and applications. J. Phys. Condens. Mat. 21, 364221 (2009).

    Google Scholar 

  2. 2

    Awschalom, D. D., Epstein, R. & Hanson, R. The diamond age of spintronics. Sci. Am. 297, 84–91 (October 2007).

    Google Scholar 

  3. 3

    Gaebel, T. et al. Room-temperature coherent coupling of single spins in diamond. Nature Phys. 2, 408–413 (2006).

    ADS  Google Scholar 

  4. 4

    Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    ADS  Google Scholar 

  5. 5

    Briegel, H. J., Dur, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS  Google Scholar 

  6. 6

    Zaitsev, A. M. Vibronic spectra of impurity-related optical centers in diamond. Phys. Rev. B 61, 12909–12922 (2000).

    ADS  Google Scholar 

  7. 7

    Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    ADS  Google Scholar 

  8. 8

    Beveratos, A. et al. Room temperature stable single-photon source. Eur. Phys. J. D 18, 191–196 (2002).

    ADS  Google Scholar 

  9. 9

    Beveratos, A. et al. Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002).

    ADS  Google Scholar 

  10. 10

    Wang, C. L., Kurtsiefer, C., Weinfurter, H. & Burchard, B. Single photon emission from SiV centres in diamond produced by ion implantation. J. Phys. B 39, 37–41 (2006).

    ADS  Google Scholar 

  11. 11

    Neu, E. et al. Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium. New J. Phys. 13, 025012 (2011).

    ADS  Google Scholar 

  12. 12

    Gaebel, T. et al. Stable single-photon source in the near infrared. New J. Phys. 6, 98–104 (2004).

    ADS  Google Scholar 

  13. 13

    Wu, E. et al. Room temperature triggered single-photon source in the near infrared. New J. Phys. 9, 434 (2007).

    ADS  Google Scholar 

  14. 14

    Rabeau, J. R. et al. Fabrication of single nickel-nitrogen defects in diamond by chemical vapor deposition. Appl. Phys. Lett. 86, 131926 (2005).

    ADS  Google Scholar 

  15. 15

    Aharonovich, I. et al. Two-level ultrabright single photon emission from diamond nanocrystals. Nano Lett. 9, 3191–3195 (2009).

    ADS  Google Scholar 

  16. 16

    Aharonovich, I. et al. Chromium single-photon emitters in diamond fabricated by ion implantation. Phys. Rev. B 81, 121201(R) (2010).

    ADS  Google Scholar 

  17. 17

    Naydenov, B. et al. Engineering single photon emitters by ion implantation in diamond. Appl. Phys. Lett. 95, 181109 (2009).

    ADS  Google Scholar 

  18. 18

    Aharonovich, I. et al. Formation of color centers in nanodiamonds by plasma assisted diffusion of impurities from the growth substrate. Appl. Phys. Lett. 93, 243112 (2008).

    ADS  Google Scholar 

  19. 19

    Aharonovich, I. et al. Enhanced single-photon emission in the near infrared from a diamond color center. Phys. Rev. B 79, 235316 (2009).

    ADS  Google Scholar 

  20. 20

    Simpson, D. A. et al. A highly efficient two level diamond based single photon source. Appl. Phys. Lett. 94, 203107 (2009).

    ADS  Google Scholar 

  21. 21

    Aharonovich, I., Castelletto, S., Simpson, D. A., Greentree, A. D. & Prawer, S. Photophysics of chromium-related diamond single-photon emitters. Phys. Rev. A 81, 043813 (2010).

    ADS  Google Scholar 

  22. 22

    Tisler, J. et al. Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959–1965 (2009).

    Google Scholar 

  23. 23

    Vlasov, I. I. et al. Nitrogen and luminescent nitrogen-vacancy defects in detonation nanodiamond. Small 6, 687–694 (2010).

    Google Scholar 

  24. 24

    Schrand, A. M., Hens, S. A. C. & Shenderova, O. A. Nanodiamond particles: Properties and perspectives for bioapplications. Crit. Rev. Solid State 34, 18–74 (2009).

    Google Scholar 

  25. 25

    Smith, B. R. et al. Five-nanometer diamond with luminescent nitrogen-vacancy defect centers. Small 5, 1649–1653 (2009).

    Google Scholar 

  26. 26

    Barth, M., Nusse, N., Lochel, B. & Benson, O. Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity. Opt. Lett. 34, 1108–1110 (2009).

    ADS  Google Scholar 

  27. 27

    Gregor, M., Henze, R., Schroder, T. & Benson, O. On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator. Appl. Phys. Lett. 95, 153110 (2009).

    ADS  Google Scholar 

  28. 28

    Schietinger, S., Schroder, T. & Benson, O. One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator. Nano Lett. 8, 3911–3915 (2008).

    ADS  Google Scholar 

  29. 29

    Wolters, J. et al. Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97, 141108 (2010).

    ADS  Google Scholar 

  30. 30

    Englund, D. et al. Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010).

    ADS  Google Scholar 

  31. 31

    Barclay, P. E., Santori, C., Fu, K. M., Beausoleil, R. G. & Painter, O. Coherent interference effects in a nano-assembled diamond NV center cavity-QED system. Opt. Express 17, 8081–8097 (2009).

    ADS  Google Scholar 

  32. 32

    Kruger, A. et al. Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon 43, 1722–1730 (2005).

    Google Scholar 

  33. 33

    Dolmatov, V. Y. Detonation synthesis ultradispersed diamonds: Properties and applications. Usp. Khim. 70, 687–708 (2001).

    Google Scholar 

  34. 34

    Shao, L. X., Xie, E. Q., He, D. Y., Chen, G. H. & Xu, K. Nucleation and growth of CVD diamond films on smooth Si substrate pretreated by nanodiamond powders. J. Inorg. Mater. 13, 927–931 (1998).

    Google Scholar 

  35. 35

    Stacey, A., Aharonovich, I., Prawer, S. & Butler, J. E. Controlled synthesis of high quality micro/nano-diamonds by microwave plasma chemical vapor deposition. Diam. Rel. Mater. 18, 51–55 (2009).

    Google Scholar 

  36. 36

    Osawa, E. Recent progress and perspectives in single-digit nanodiamond. Diam. Rel. Mater. 16, 2018–2022 (2007).

    Google Scholar 

  37. 37

    Martineau, P. M. et al. High crystalline quality single crystal chemical vapour deposition diamond. J. Phys. Condens. Mat. 21, 364205–364212 (2009).

    Google Scholar 

  38. 38

    Ampem-Lassen, E. et al. Nano-manipulation of diamond-based single photon sources. Opt. Express 17, 11287–11293 (2009).

    ADS  Google Scholar 

  39. 39

    Wort, C. J. H. & Balmer, R. S. Diamond as an electronic material. Mater. Today 11, 22–28 (January 2008).

    Google Scholar 

  40. 40

    Balasubramanian, G. et al. Ultralong spin coherence time in isotopically engineered diamond. Nature Mater. 8, 383–387 (2009).

    ADS  Google Scholar 

  41. 41

    Fairchild, B. A. et al. Fabrication of ultrathin single-crystal diamond membranes. Adv. Mater. 20, 4793–4798 (2008).

    Google Scholar 

  42. 42

    Hiscocks, M. P. et al. Diamond waveguides fabricated by reactive ion etching. Opt. Express 16, 19512–19519 (2008).

    ADS  Google Scholar 

  43. 43

    Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

    ADS  Google Scholar 

  44. 44

    Parikh, N. R. et al. Single-crystal diamond plate liftoff achieved by ion-implantation and subsequent annealing. Appl. Phys. Lett. 61, 3124–3126 (1992).

    ADS  Google Scholar 

  45. 45

    Olivero, P. et al. Ion-beam-assisted lift-off technique for three-dimensional micromachining of freestanding single-crystal diamond. Adv. Mater. 17, 2427–2430 (2005).

    Google Scholar 

  46. 46

    Liao, M., Hishita, S., Watanabe, E., Koizumi, S. & Koide, Y. Suspended single-crystal diamond nanowires for high-performance nanoelectromechanical switches. Adv. Mater. 22, 5393–5397 (2010).

    Google Scholar 

  47. 47

    Zalloum, O. H. Y., Parrish, M., Terekhov, A. & Hofmeister, W. On femtosecond micromachining of HPHT single-crystal diamond with direct laser writing using tight focusing. Opt. Express 18, 13122–13135 (2010).

    ADS  Google Scholar 

  48. 48

    Faraon, A., Barclay, P. E., Santori, C., Fu, K. M. & Beausoleil, R. G. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photon. 5, 301–305 (2011).

    ADS  Google Scholar 

  49. 49

    Gu, E. et al. Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays. Appl. Phys. Lett. 84, 2754–2756 (2004).

    ADS  Google Scholar 

  50. 50

    Karlsson, M. & Nikolajeff, F. Diamond micro-optics: Microlenses and antireflection structured surfaces for the infrared spectral region. Opt. Express 11, 502–507 (2003).

    ADS  Google Scholar 

  51. 51

    Mainwood, A. Recent developments of diamond detectors for particles and UV radiation. Semicond. Sci. Technol. 15, R55–R63 (2000).

    ADS  Google Scholar 

  52. 52

    Angelone, M. et al. Neutron detectors based upon artificial single crystal diamond. IEEE Trans. Nucl. Sci. 56, 2275–2279 (2009).

    ADS  Google Scholar 

  53. 53

    Harkonen, A. et al. 4 W single-transverse mode VECSEL utilising intra-cavity diamond heat spreader. Electron. Lett. 42, 693–694 (2006).

    Google Scholar 

  54. 54

    Kleimeier, N. F. et al. Autocorrelation and phase retrieval in the UV using two-photon absorption in diamond pin photodiodes. Opt. Express 18, 6945–6956 (2010).

    ADS  Google Scholar 

  55. 55

    Koizumi, S., Watanabe, K., Hasegawa, M. & Kanda, H. Ultraviolet emission from a diamond pn junction. Science 292, 1899–1901 (2001).

    ADS  Google Scholar 

  56. 56

    Zaitsev, A. M., Bergman, A. A., Gorokhovsky, A. A. & Huang, M. B. Diamond light emitting diode activated with Xe optical centers. Phys. Sta. Sol. A 203, 638–642 (2006).

    ADS  Google Scholar 

  57. 57

    Mildren, R. P., Butler, J. E. & Rabeau, J. R. CVD-diamond external cavity Raman laser at 573 nm. Opt. Express 16, 18950–18955 (2008).

    ADS  Google Scholar 

  58. 58

    Mildren, R. P. & Sabella, A. Highly efficient diamond Raman laser. Opt. Lett. 34, 2811–2813 (2009).

    ADS  Google Scholar 

  59. 59

    Lubeigt, W. et al. An intra-cavity Raman laser using synthetic single-crystal diamond. Opt. Express 18, 16765–16770 (2010).

    ADS  Google Scholar 

  60. 60

    Sabella, A., Piper, J. A. & Mildren, R. P. 1240 nm diamond Raman laser operating near the quantum limit. Opt. Lett. 35, 3874–3876 (2010).

    ADS  Google Scholar 

  61. 61

    Spence, D. J., Granados, E. & Mildren, R. P. Mode-locked picosecond diamond Raman laser. Opt. Lett. 35, 556–558 (2010).

    ADS  Google Scholar 

  62. 62

    Mohan, N., Chen, C. S., Hsieh, H. H., Wu, Y. C. & Chang, H. C. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans. Nano Lett. 10, 3692–3699 (2010).

    ADS  Google Scholar 

  63. 63

    Wee, T. L. et al. Preparation and characterization of green fluorescent nanodiamonds for biological applications. Diam. Rel. Mater. 18, 567–573 (2009).

    Google Scholar 

  64. 64

    Chang, Y. R. et al. Mass production and dynamic imaging of fluorescent nanodiamonds. Nature Nanotech. 3, 284–288 (2008).

    Google Scholar 

  65. 65

    Fu, C. C. et al. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl Acad. Sci. USA 104, 727–732 (2007).

    ADS  Google Scholar 

  66. 66

    Faklaris, O. et al. Photoluminescent diamond nanoparticles for cell labeling: Study of the uptake mechanism in mammalian cells. ACS Nano 3, 3955–3962 (2009).

    Google Scholar 

  67. 67

    Faklaris, O. et al. Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small 4, 2236–2239 (2008).

    Google Scholar 

  68. 68

    Kruger, A., Liang, Y. J., Jarre, G. & Stegk, J. Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 16, 2322–2328 (2006).

    Google Scholar 

  69. 69

    Zhang, B. L. et al. Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: A combined ensemble and single-particle study. Small 5, 2716–2721 (2009).

    ADS  Google Scholar 

  70. 70

    Zhang, X. Q. et al. Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3, 2609–2616 (2009).

    Google Scholar 

  71. 71

    Manus, L. M. et al. Gd(III)-nanodiamond conjugates for MRI contrast enhancement. Nano Lett. 10, 484–489 (2010).

    ADS  Google Scholar 

  72. 72

    Mohan, N. et al. Sub-20-nm fluorescent nanodiamonds as photostable biolabels and fluorescence resonance energy transfer donors. Adv. Mater. 22, 843–847 (2009).

    ADS  Google Scholar 

  73. 73

    Xu, X. Y., Yu, Z. M., Zhu, Y. W. & Wang, B. C. Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond. J. Solid State Chem. 178, 688–693 (2005).

    ADS  Google Scholar 

  74. 74

    Eidelman, E. D. et al. A stable suspension of single ultrananocrystalline diamond particles. Diam. Rel. Mater. 14, 1765–1769 (2005).

    Google Scholar 

  75. 75

    Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nature Photon. 3, 144–147 (2009).

    ADS  Google Scholar 

  76. 76

    Han, K. Y. et al. Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light. Nano Lett. 9, 3323–3329 (2009).

    ADS  Google Scholar 

  77. 77

    Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–648 (2008).

    ADS  Google Scholar 

  78. 78

    Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–652 (2008).

    ADS  Google Scholar 

  79. 79

    Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    ADS  Google Scholar 

  80. 80

    McGuinness, L. P. et al. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotechnol. 6, 358–363 (2011).

    ADS  Google Scholar 

  81. 81

    Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    ADS  Google Scholar 

  82. 82

    Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nature Phys. 2, 81–90 (2006).

    ADS  Google Scholar 

  83. 83

    Su, C.-H., Greentree, A. D. & Hollenberg, L. C. L. Towards a picosecond transform-limited nitrogen-vacancy based single photon source. Opt. Express 16, 6240–6250 (2008).

    ADS  Google Scholar 

  84. 84

    Tomljenovic-Hanic, S., Steel, M. J., de Sterke, C. M. & Salzman, J. Diamond based photonic crystal microcavities. Opt. Express 14, 3556–3562 (2006).

    ADS  Google Scholar 

  85. 85

    Wang, C. F. et al. Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond. Appl. Phys. Lett. 91, 201112 (2007).

    ADS  Google Scholar 

  86. 86

    Baldwin, J. W., Zalalutdinov, M., Feygelson, T., Butler, J. E. & Houston, B. H. Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films. J. Vac. Sci. Technol. B 24, 50–54 (2006).

    Google Scholar 

  87. 87

    Tamarat, P. et al. Stark shift control of single optical centers in diamond. Phys. Rev. Lett. 97, 083002 (2006).

    ADS  Google Scholar 

  88. 88

    Barclay, P. E., Fu, K. M., Santori, C. & Beausoleil, R. G. Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. Opt. Express 17, 9588–9601 (2009).

    ADS  Google Scholar 

  89. 89

    Fu, K. M. C. et al. Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide. Appl. Phys. Lett. 93, 203107 (2008).

    ADS  Google Scholar 

  90. 90

    Barclay, P. E., Fu, K. M. C., Santori, C. & Beausoleil, R. G. Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond. Appl. Phys. Lett. 95, 191115 (2009).

    ADS  Google Scholar 

  91. 91

    Van der Sar, T. et al. Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center. Appl. Phys. Lett. 94, 173104 (2009).

    ADS  Google Scholar 

  92. 92

    Rabeau, J. R., Huntington, S. T., Greentree, A. D. & Prawer, S. Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding. Appl. Phys. Lett. 86, 134104 (2005).

    ADS  Google Scholar 

  93. 93

    Park, Y. S., Cook, A. K. & Wang, H. L. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075–2079 (2006).

    ADS  Google Scholar 

  94. 94

    Schietinger, S., Barth, M., Alchele, T. & Benson, O. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. Nano Lett. 9, 1694–1698 (2009).

    ADS  Google Scholar 

  95. 95

    Kolesov, R. et al. Wave-particle duality of single surface plasmon polaritons. Nature Phys. 5, 470–474 (2009).

    ADS  Google Scholar 

  96. 96

    Alleaume, R. et al. Experimental open-air quantum key distribution with a single-photon source. New J. Phys. 6, 92 (2004).

    ADS  Google Scholar 

  97. 97

    Bradac, C. et al. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nature Nanotech. 5, 345–349 (2010).

    ADS  Google Scholar 

  98. 98

    Aharonovich, I. et al. Producing optimized ensembles of nitrogen-vacancy color centers for quantum information applications. J. Appl. Phys. 106, 124904 (2009).

    ADS  Google Scholar 

  99. 99

    Naydenov, B. et al. Enhanced generation of single optically active spins in diamond by ion implantation. Appl. Phys. Lett. 96, 163108 (2010).

    ADS  Google Scholar 

  100. 100

    Pezzagna, S., Naydenov, B., Jelezko, F., Wrachtrup, J. & Meijer, J. Creation efficiency of nitrogen-vacancy centres in diamond. New J. Phys. 12, 065017 (2010).

    ADS  Google Scholar 

  101. 101

    Wang, X. Y. et al. Non-blinking semiconductor nanocrystals. Nature 459, 686–689 (2009).

    ADS  Google Scholar 

  102. 102

    Hadden, J. P. et al. Strongly enhanced photon collection from diamond defect centers under microfabricated integrated solid immersion lenses. Appl. Phys. Lett. 97, 241901 (2010).

    ADS  Google Scholar 

  103. 103

    Siyushev, P. et al. Monolithic diamond optics for single photon detection. Appl. Phys. Lett. 97, 241902 (2010).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Mildren for useful discussions about diamond Raman lasers. This work was supported by the Australian Research Council, The International Science Linkages Program of the Australian Department of Innovation, Industry, Science and Research (project CG110039). A.D.G. was supported by the Australian Research Council Queen Elizabeth II Foundation (project DP0880466). I.A. acknowledges the Albert Shimmins Memorial Fund.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Igor Aharonovich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aharonovich, I., Greentree, A. & Prawer, S. Diamond photonics. Nature Photon 5, 397–405 (2011). https://doi.org/10.1038/nphoton.2011.54

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing