Abstract
The statistical error in any estimation can be reduced by repeating the measurement and averaging the results. The central limit theorem implies that the reduction is proportional to the square root of the number of repetitions. Quantum metrology is the use of quantum techniques such as entanglement to yield higher statistical precision than purely classical approaches. In this Review, we analyse some of the most promising recent developments of this research field and point out some of the new experiments. We then look at one of the major new trends of the field: analyses of the effects of noise and experimental imperfections.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Quantum microscopy of cells at the Heisenberg limit
Nature Communications Open Access 28 April 2023
-
Quantum loss sensing with two-mode squeezed vacuum state under noisy and lossy environment
Scientific Reports Open Access 12 April 2023
-
Photon bound state dynamics from a single artificial atom
Nature Physics Open Access 20 March 2023
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: Beating the standard quantum limit. Science 306, 1330–1336 (2004).
Lee, H., Kok, P. & Dowling, J. P. A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325–2338 (2002).
Wineland, D. J., Bollinger, J. J., Itano, W. M. & Moore, F. L. Spin squeezing and reduced quantum noise in spectroscopy. Phys. Rev. A 46, R6797–R6800 (1992).
Braunstein, S. L. Quantum limits on precision measurements of phase. Phys. Rev. Lett. 69, 3598–3601 (1992).
Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693–1708 (1981).
Holland, M. J. & Burnett, K. Interferometric detection of optical phase shift at the Heisenberg limit. Phys. Rev. Lett. 71, 1355–1358 (1993).
O'Brien, J. L. Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).
Helstrom, C. W. Quantum Detection and Estimation Theory (Academic, 1976).
Braunstein, S. L., Caves, M. C. & Milburn, G. J. Generalized uncertainty relations: theory, examples, and Lorentz invariance. Ann. Phys. 247, 135–173 (1996).
Braunstein, S. L. & Caves, C. M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72, 3439–3443 (1994).
Holevo, A. S. Probabilistic and Statistical Aspect of Quantum Theory (Edizioni della Normale, 2011).
Hayashi, M. (ed.) Asymptotic Theory of Quantum Statistical Inference: selected papers (World Scientific, 2005).
Hayashi, M. Quantum Information Ch. 6–7 (Springer, 2006).
Paris, M. G. A. Quantum estimation for quantum technology. Int. J. Quant. Inf. 7, 125–137 (2009).
Cramér, H. Mathematical Methods of Statistics Ch. 32–34 (Princeton Univ., 1946).
Hayashi, M. & Matsumoto, K. Asymptotic performance of optimal state estimation in qubit system. J. Math. Phys. 49, 102101 (2008).
Gill, R. D. & Massar, S. State estimation for large ensembles. Phys. Rev. A 61, 042312 (1999).
Fujiwara, A. Strong consistency and asymptotic efficiency for adaptive quantum estimation problems. J. Phys. A 39, 12489–12504 (2006).
Nagaoka, H. An asymptotic efficient estimator for a one-dimensional parametric model of quantum statistical operators. Proc. IEEE Inf. Symp. Inform. Theory 198 (1988).
Nagaoka, H. On the parameter estimation problem for quantum statistical models. Proc. 12th Symp. Inform. Theory Appl. 577–582 (1989).
Tsang, M., Wiseman, H. M. & Caves, C. M. Fundamental quantum limit to wave form estimation. Preprint at http://arxiv.org/abs/1006.5407 (2010).
Bennett, C. H. et al. Quantum nonlocality without entanglement. Phys. Rev. A, 59 1070–1091 (1999).
Fujiwara, A. Quantum channel identification problem. Phys. Rev. A 63, 042304 (2001).
Hayashi, M. Comparison between the Cramér–Rao and the mini-max approaches in quantum channel estimation. Preprint at http://arxiv.org/abs/1003.4575 (2010).
Fujiwara, A. & Imai, H. Quantum parameter estimation of a generalized Pauli channel. J. Phys. A 36, 8093–8103 (2003).
Fischer, D. G., Mack, H., Cirone, M. A. & Freyberger, M. Enhanced estimation of a noisy quantum channel using entanglement. Phys. Rev. A 64, 022309 (2001).
Fujiwara, A. Estimation of SU(2) operation and dense coding: An information geometric approach. Phys. Rev. A 65, 012316 (2002).
Buzek, V., Derka, R. & Massar, S. Optimal quantum clocks. Phys. Rev. Lett. 82, 2207–2210 (1999).
de Burgh, M. & Bartlett, S. D. Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement. Phys. Rev. A 72, 042301 (2005).
Chiribella, G., D'Ariano, G. M., Perinotti, P. & Sacchi, M. F. Efficient use of quantum resources for the transmission of a reference frame. Phys. Rev. Lett. 93, 180503 (2004).
Bagan, E., Baig, M. & Munoz-Tapia, R. Quantum reverse-engineering and reference frame alignment without non-local correlations. Phys. Rev. A 70, 030301 (2004).
Hayashi, M. Parallel treatment of estimation of SU(2) and phase estimation. Phys. Lett. A 354, 183–189 (2006).
van Dam, W., D'Ariano, G. M., Ekert, A., Macchiavello, C. & Mosca, M. Optimal quantum circuits for general phase estimation. Phys. Rev. Lett. 98, 090501 (2007).
Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).
Imai, H. & Fujiwara, A. Geometry of optimal estimation scheme for SU(D) channels. J. Phys. A 40, 4391–4400 (2007).
Ballester, M. Estimation of unitary quantum operations. Phys. Rev. A 69, 022303 (2004).
Sasaki, M., Ban, M. & Barnett, S. M. Optimal parameter estimation of depolarizing channel. Phys. Rev. A 66, 022308 (2002).
Ji, Z., Wang, G., Duan, R., Feng, Y. & Ying, M. Parameter estimation of quantum channels. IEEE Trans. Inf. Theory 54, 5172–5185 (2008).
Luis, A. Phase-shift amplification for precision measurements without nonclassical states. Phys. Rev. A 65, 025802 (2002).
Higgins, B. L., Berry, D. W., Bartlett, S. D., Wiseman, H. M. & Pryde, G. J. Entanglement-free Heisenberg-limited phase estimation. Nature 450, 393–396 (2007).
Yurke, B., McCall, S. L. & Klauder, J. R. SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986).
Hradil, Z. et al. Quantum phase in interferometry. Phys. Rev. Lett. 76, 4295–4299 (1996).
Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993).
Sorensen, A., Duan, L. M., Cirac, J. I. & Zoller, P. Many-particle entanglement with Bose-Einstein condensates. Nature 409, 63–66 (2001).
Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion–qubit phase gate. Nature 422, 412–415 (2003).
Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).
Leibfried, D. et al. Creation of a six-atom 'Schrödinger-cat' state. Nature 438, 639–642 (2005).
Meyer, V. et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. Phys. Rev. Lett. 86, 5870–5873 (2001).
Orzel, C., Tuchman, A. K., Fenselau, M. L., Yasuda, M. & Kasevich, M. A. Squeezed states in a Bose–Einstein condensate. Science 291, 2386–2389 (2001).
Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009).
Jones, J. A. et al. Magnetic field sensing beyond the standard quantum limit using 10-spin NOON states. Science 324, 1166–1168 (2009).
Nielsen, M. A. & Chuang, I. L. Programmable quantum gate arrays. Phys. Rev. Lett. 79, 321–324 (1997).
Hayashi, M. Phase estimation with photon number constraint. Preprint at http://arxiv.org/abs/1011.2546 (2010).
Hradil, Z. & Rehácek, J. Quantum interference and Fisher information. Phys. Lett. A 334, 267–272 (2005).
Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996).
Duking, G. A. & Dowling, J. P. Local and global distinguishability in quantum interferometry. Phys. Rev. Lett. 99, 070801 (2007).
Kok, P., Lee, H. & Dowling, J. P. Creation of large-photon-number path entanglement conditioned on photodetection. Phys. Rev. A 65, 052104 (2002).
Pryde, G. J. & White, A. G. Creation of maximally entangled photon-number states using optical fiber multiports. Phys. Rev. A 68, 052315 (2003).
Cable, H. & Dowling, J. P. Efficient generation of large number-path entanglement using only linear optics and feed-forward. Phys. Rev. Lett. 99, 163604 (2007).
Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).
Lamas-Linares, A., Howell, J. C. & Bouwmeester D. Stimulated emission of polarization-entangled photons. Nature 412, 887–890 (2001).
D'Angelo, M., Chekhova, M. V. & Shih, Y. Two-photon diffraction and quantum lithography. Phys. Rev. Lett. 87, 013602 (2001).
Walther, P. et al. De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004).
Nagata, T., Okamoto, R., O'Brien, J. L., Sasaki, K. & Takeuchi, S. Beating the standard quantum limit with four-entangled photons. Science 316, 726–729 (2007).
Okamoto, R. et al. Beating the standard quantum limit: Phase super-sensitivity of N-photon interferometers. New J. Phys. 10, 073033 (2008).
Kacprowicz, M., Demkowicz-Dobrzanski, R., Wasilewski, W., Banaszek, K. & Walmsley, I. A. Experimental quantum-enhanced estimation of a lossy phase shift. Nature Photon. 4, 357–360 (2010).
Hofmann, H. F. & Ono, T. High-photon-number path entanglement in the interference of spontaneously down-converted photon pairs with coherent laser light. Phys. Rev. A 76, 031806(R) (2007).
Ono, T. & Hofmann, H. F. Effects of photon losses on phase estimation near the Heisenberg limit using coherent light and squeezed vacuum. Phys. Rev. A 81, 033819 (2010).
Afek, I., Ambar, O. & Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010).
Pezzé, L. & Smerzi, A. Mach–Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light. Phys Rev. Lett. 100, 073601 (2008).
Monras, A. Optimal phase measurements with pure Gaussian states. Phys. Rev. A 73, 033821 (2006).
Cable, H. & Durkin, G. A. Parameter estimation with entangled photons produced by parametric down-conversion. Phys. Rev. Lett. 105, 013603 (2010).
Braunstein, S. L. How large a sample is needed for maximum likelihood estimator to be approximately Gaussian? J. Phys. A 25, 3813–3826 (1992).
Pezzé, L. & Smerzi, A. Phase sensitivity of a Mach–Zehnder interferometer. Phys. Rev. A 73, 011801(R) (2006).
Pezzé, L. & Smerzi, A. Sub shot-noise interferometric phase sensitivity with beryllium ions Schrödinger cat states. Europhys. Lett. 78, 30004 (2007).
Lane, A. S., Braunstein, S. L. & Caves, C. M. Maximum-likelihood statistics of multiple quantum phase measurements. Phys. Rev. A 47, 1667–1696 (1993).
Pregnell, K. L. & Pegg, D. T. Retrodictive quantum optical state engineering. J. Mod. Opt. 51, 1613–1626 (2004).
Resch, K. J. et al. Time-reversal and super-resolving phase measurements. Phys. Rev. Lett. 98, 223601 (2007).
Luis, A. Nonlinear transformations and the Heisenberg limit. Phys. Lett. A 329, 8–13 (2004).
Beltrán, J. & Luis, A. Breaking the Heisenberg limit with inefficient detectors. Phys. Rev. A 72, 045801 (2005).
Luis, A., Quantum limits, nonseparable transformations, and nonlinear optics. Phys. Rev. A 76, 035801 (2007).
Boixo, S., Flammia, S. T., Caves, C. M. & Geremia, J. Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett. 98, 090401 (2007).
Boixo, S. et al. Quantum-limited metrology with product states. Phys. Rev. A 77, 012317 (2008).
Boixo, S. et al. Quantum metrology: Dynamics versus entanglement. Phys. Rev. Lett. 101, 040403 (2008).
Woolley, M. J., Milburn, G. J. & Caves, C. M. Nonlinear quantum metrology using coupled nanomechanical resonators. New J. Phys. 10, 125018 (2008).
Roy, S. M. & Braunstein, S. L. Exponentially enhanced quantum metrology. Phys. Rev. Lett. 100, 220501 (2008).
Chase, B. A., Baragiola, B. Q., Partner, H. L., Black, B. D. & Geremia, J. M. Magnetometry via a double-pass continuous quantum measurement of atomic spin. Phys. Rev. A 79, 062107 (2009).
Choi, S. & Sundaram, B. Bose–Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit. Phys. Rev. A 77, 053613 (2008).
Maldonado-Mundo, D. & Luis, A. Metrological resolution and minimum uncertainty states in linear and nonlinear signal detection schemes. Phys. Rev. A 80, 063811 (2009).
Rey, A. M., Jiang, L. & Lukin, M. D. Quantum-limited measurements of atomic scattering properties. Phys. Rev. A 76, 053617 (2007).
Tilma, T., Hamaji, S., Munro, W. J. & Nemoto, K. Entanglement is not a critical resource for quantum metrology. Phys. Rev. A 81, 022108 (2010).
Rivas, A. & Luis, A. Intrinsic metrological resolution as a distance measure and nonclassical light. Phys. Rev. A 77, 063813 (2008).
Rivas, A. & Luis, A. Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. Phys. Rev. Lett. 105, 010403 (2010).
Napolitano, M. & Mitchell, M. W. Non-linear metrology with a quantum interface. New J. Phys. 12, 093016 (2010).
Napolitano, M. et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Preprint at http://arxiv.org/abs/1012.5787 (2010).
Shabaniand, A. & Jacobs, K. Locally optimal control of quantum systems with strong feedback. Phys. Rev. Lett. 101, 230403 (2008).
Zwierz, M., Pérez-Delgado, C. A. & Kok, P. General optimality of the Heisenberg limit for quantum metrology. Phys. Rev. Lett. 105, 180402 (2010).
Gilbert, G., Hamrick, M. & Weinstein, Y. S. Use of maximally entangled N-photon states for practical quantum interferometry. J. Opt. Soc. Am. B 25, 1336–1340 (2008).
Rubin, M. A. & Kaushik, S. Loss-induced limits to phase measurement precision with maximally entangled states. Phys. Rev. A 75, 053805 (2007).
Banaszek, K., Demkowicz-Dobrzanski, R. & Walmsley, I. A. Quantum states made to measure. Nature Photon. 3, 673–676 (2009).
Kolodynski, J. & Demkowicz-Dobrzanski, R. Phase estimation without a priori phase knowledge in the presence of loss. Phys. Rev. A 82, 053804 (2010).
Knysh, S., Smelyanskiy, V. N. & Durkin, G. A. Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state. Phys. Rev. A 83, 021804(R) (2011).
Huver, S. D., Wildfeuer, C. F. & Dowling, J. P. Entangled Fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A 78, 063828 (2008).
Dorner, U. et al. Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009).
Demkowicz-Dobrzanski, R. et al. Quantum phase estimation with lossy interferometers. Phys. Rev. A 80, 013825 (2009).
Lee, T. W. et al. Optimization of quantum interferometric metrological sensors in the presence of photon loss. Phys. Rev. A 80, 063803 (2009).
Vitelli, C., Spagnolo, N., Toffoli, L., Sciarrino, F. & De Martini, F. Enhanced resolution of lossy interferometry by coherent amplification of single photons. Phys. Rev. Lett. 105, 113602 (2010).
Genoni, M. G., Olivares, S. & Paris, M. G. A. Phase estimation in the presence of phase-diffusion. Preprint at http://arxiv.org/abs/1012.1123 (2010).
Aspachs, M., Calsamiglia, J., Munoz-Tapia, R. & Bagan, E. Phase estimation for thermal Gaussian states. Phys. Rev. A 79, 033834 (2009).
Maccone, L. & De Cillis, G. Robust strategies for lossy quantum interferometry. Phys. Rev. A 79, 023812 (2009).
Huelga, S. F. et al. Improvement of frequency standards with quantum entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997).
Auzinsh, M. et al. Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? Phys. Rev. Lett. 93, 173002 (2004).
Ulam-Orgikh, D. & Kitagawa, M. Spin squeezing and decoherence limit in Ramsey spectroscopy. Phys. Rev. A 64, 052106 (2001).
Wineland, D. J., Monroe, C., Itano, W. M., Leibfried, D. & King, B. E. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Techol. 103, 259–328 (1998).
André, A., Sorensen, A. S. & Lukin, M. D. Stability of atomic clocks based on entangled atoms. Phys. Rev. Lett. 92, 230801 (2004).
Shaji, A. & Caves, C. M. Qubit metrology and decoherence. Phys. Rev. A 76, 032111 (2007).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon 5, 222–229 (2011). https://doi.org/10.1038/nphoton.2011.35
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphoton.2011.35
This article is cited by
-
Experimental super-Heisenberg quantum metrology with indefinite gate order
Nature Physics (2023)
-
Fundamental quantum limits of magnetic nearfield measurements
npj Quantum Information (2023)
-
Photon bound state dynamics from a single artificial atom
Nature Physics (2023)
-
Satellite-based quantum information networks: use cases, architecture, and roadmap
Communications Physics (2023)
-
Non-linear Boson Sampling
npj Quantum Information (2023)