Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures

A Corrigendum to this article was published on 31 July 2012

This article has been updated

Abstract

Existing infrared detectors rely on complex microfabrication and thermal management methods. Here, we report an attractive platform of low-thermal-mass resonators inspired by the architectures of iridescent Morpho butterfly scales. In these resonators, the optical cavity is modulated by its thermal expansion and refractive index change, resulting in ‘wavelength conversion’ of mid-wave infrared (3–8 µm) radiation into visible iridescence changes. By doping Morpho butterfly scales with single-walled carbon nanotubes, we achieved mid-wave infrared detection with 18–62 mK temperature sensitivity and 35–40 Hz heat-sink-free response speed. The nanoscale pitch and the extremely small thermal mass of individual ‘pixels’ promise significant improvements over existing detectors. Computational analysis explains the origin of this thermal response and guides future conceptually new bio-inspired thermal imaging sensor designs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New principle of uncooled thermal detection based on the air-filled photonic architecture of iridescent scales of a Morpho butterfly.
Figure 2: Reflectance spectra of scale reflectors of Morpho butterflies.
Figure 3: Thermal performance of reflective Morpho butterfly scales.
Figure 4: Results of Fourier transform analysis of the dynamic response of the Morpho nanostructure.
Figure 5: Computed differential reflectivity spectra of Morpho butterfly reflectors due to thermally induced changes.

Similar content being viewed by others

Change history

  • 11 July 2012

    In the version of this Article originally published, the measured temperature difference ΔT was at the detector plane, whereas the definition of temperature sensitivity (NETD) in equation (2) requires ΔT to be a thermal scene temperature difference. Thus, the NETD terminology in equation (2) has now been replaced with temperature sensitivity (TS). This error has been corrected in the HTML and PDF versions of the Article.

References

  1. Rogalski, A., Antoszewski, J. & Faraone, L. Third-generation infrared photodetector arrays. J. Appl. Phys. 105, 091101 (2009).

    Article  ADS  Google Scholar 

  2. Taylor, S. J. & Morken, J. P. Thermographic selection of effective catalysts from an encoded polymer-bound library. Science 280, 267–270 (1998).

    Article  ADS  Google Scholar 

  3. Webster, J. G. (ed.) The Measurement, Instrumentation, and Sensors Handbook (CRC Press, 1999).

    Google Scholar 

  4. Niklaus, F., Vieider, C. & Jakobsen, H. MEMS-based uncooled infrared bolometer arrays—a review. Proc. SPIE 6836, 68360D (2008).

    Article  ADS  Google Scholar 

  5. LeMieux, M. C. et al. Polymeric nanolayers as actuators for ultrasensitive thermal bimorphs. Nano Lett. 6, 730–734 (2006).

    Article  ADS  Google Scholar 

  6. McConney, M. E., Anderson, K. D., Brott, L. L., Naik, R. R. & Tsukruk, V. V. Bioinspired material approaches to sensing. Adv. Funct. Mater. 19, 2527–2544 (2009).

    Article  Google Scholar 

  7. Singamaneni, S. et al. Bimaterial microcantilevers as a hybrid sensing platform. Adv. Mater. 20, 653–680 (2008).

    Article  Google Scholar 

  8. Ostrower, D. Optical thermal imaging—replacing microbolometer technology and achieving universal deployment. III–Vs Review 19, 24–27 (2006).

    Google Scholar 

  9. Watts, M. R., Shaw, M. J. & Nielson, G. N. Microphotonic thermal imaging. Nature Photon. 1, 632–634 (2007).

    Article  ADS  Google Scholar 

  10. Shenoi, R. V., Rosenberg, J., Vandervelde, T. E., Painter, O. J. & Krishna, S. Multispectral quantum dots-in-a-well infrared detectors using plasmon assisted cavities. IEEE J. Quantum Electron. 46, 1051–1057 (2010).

    Article  ADS  Google Scholar 

  11. Dhar, N. K. Advances in micro-nano technologies for imaging sensors. SPIE Conference on Micro- and Nanotechnology Sensors, Systems, and Applications 7318, Keynote Presentation 7318-01 (2009).

  12. Schmitz, H. Thermal characterization of butterfly wings—1. Absorption in relation to different color, surface structure and basking type. J. Therm. Biol. 19, 403–412 (1994).

    Article  Google Scholar 

  13. Brown, B. R. Sensing temperature without ion channels. Nature 421, 495–495 (2003).

    Article  ADS  Google Scholar 

  14. Haché, A. & Alloghoa, G.-G. Opto-thermal modulation in biological photonic crystals. Opt. Commun. 284, 1656–1660 (2011).

    Article  ADS  Google Scholar 

  15. Klocke, D., Schmitz, A., Soltner, H., Bousack, H. & Schmitz, H. Infrared receptors in pyrophilous (‘fire loving’) insects as model for new un-cooled infrared sensors. Beilstein J. Nanotechnol. 2, 186–197 (2011).

    Article  Google Scholar 

  16. Vukusic, P., Sambles, J. R., Lawrence, C. R. & Wootton, R. J. Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B 266, 1403–1411 (1999).

    Article  Google Scholar 

  17. Kinoshita, S. & Yoshioka, S. (eds) Structural Colors in Biological Systems. Principles and Applications (Osaka University Press, 2005).

    Google Scholar 

  18. Kinoshita, S., Yoshioka, S., Fujii, Y. & Okamoto, N. Photophysics of structural color in the Morpho butterflies. Forma 17, 103–121 (2002).

    Google Scholar 

  19. Biró, L. P. & Vigneron, J. P. Photonic nanoarchitectures in butterflies and beetles: valuable sources for bioinspiration. Laser Photon. Rev. 5, 27–51 (2011).

    Article  ADS  Google Scholar 

  20. Vukusic, P. Structural colour: elusive iridescence strategies brought to light. Curr. Biol. 21, R187–R189 (2011).

    Article  Google Scholar 

  21. Guo, D., Lin, R. & Wang, W. Gaussian-optics-based optical modeling and characterization of a Fabry–Perot microcavity for sensing applications. J. Opt. Soc. Am. A 22, 1577–1588 (2005).

    Article  ADS  Google Scholar 

  22. Golub, M. A., Hutter, T. & Ruschin, S. Diffractive optical elements with porous silicon layers. Appl. Opt. 49, 1341–1349 (2010).

    Article  ADS  Google Scholar 

  23. Charrier, J. & Dribek, M. Theoretical study of the factor of merit of porous silicon based optical biosensors. J. Appl. Phys. 107, 044905 (2010).

    Article  ADS  Google Scholar 

  24. Banerjee, S. & Dong, Z. Optical characterization of iridescent wings of morpho butterflies using a high accuracy nonstandard finite-difference time-domain algorithm. Opt. Rev. 14, 359–361 (2007).

    Article  Google Scholar 

  25. Smith, G. S. Structural color of Morpho butterflies. Am. J. Phys. 77, 1010–1019 (2009).

    Article  ADS  Google Scholar 

  26. Ding, Y., Xu, S. & Wang, Z. L. Structural colors from Morpho peleides butterfly wing scales. J. Appl. Phys. 106, 074702 (2009).

    Article  ADS  Google Scholar 

  27. Yang, X., Peng, Z., Zuo, H., Shi, T. & Liao, G. Using hierarchy architecture of Morpho butterfly scales for chemical sensing: experiment and modeling. Sens. Actuat. A 167, 367–373 (2011).

    Article  Google Scholar 

  28. Saranathan, V. et al. Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales. Proc. Natl Acad. Sci. USA 107, 11676–11681 (2010).

    Article  ADS  Google Scholar 

  29. Saito, A. et al. Numerical analysis on the optical role of nano-randomness on the Morpho butterfly's scale. J. Nanosci. Nanotechnol. 11, 2785–2792 (2011).

    Article  Google Scholar 

  30. Kambe, M., Zhu, D. & Kinoshita, S. Origin of retroreflection from a wing of the morpho butterfly. J. Phys. Soc. Jpn 80, 054801 (2011).

    Article  ADS  Google Scholar 

  31. Driggers, R. G., Webb, C., Pruchnic, S. J. Sr, Halford, C. E. & Burroughs, E. E. Jr. Laboratory measurement of sampled infrared imaging system performance. Opt. Eng. 38, 852–861 (1999).

    Article  ADS  Google Scholar 

  32. Ghiradella, H. Structure of butterfly scales: patterning in an insect cuticle. Microsc. Res. Tech. 27, 429–438 (1994).

    Article  Google Scholar 

  33. Kinoshita, S. & Yoshioka, S. Structural colors in nature: the role of regularity and irregularity in the structure. Chem. Phys. Chem. 6, 1442–1459 (2005).

    Article  Google Scholar 

  34. Potyrailo, R. A. et al. Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photon. 1, 123–128 (2007).

    Article  ADS  Google Scholar 

  35. Potyrailo, R. A. Enhancement in screening throughput and density of combinatorial libraries using wavelet analysis. Appl. Phys. Lett. 84, 5103–5105 (2004).

    Article  ADS  Google Scholar 

  36. Andrady, A. L. & Xu, P. Elastic behavior of chitosan films. J. Polym. Sci. B 35, 517–521 (1997).

    Article  Google Scholar 

  37. Cheng, J. C. & Pisano, A. P. Photolithographic process for integration of the biopolymer chitosan into micro/nanostructures. J. Microelectromech. Syst. 17, 402–409 (2008).

    Article  Google Scholar 

  38. Ogawa, Y., Hori, R., Kim, U.-J. & Wada, M. Elastic modulus in the crystalline region and the thermal expansion coefficients of alpha-chitin determined using synchrotron radiated X-ray diffraction. Carbohydr. Polym. 83, 1213–1217 (2011).

    Article  Google Scholar 

  39. Zhang, Z., Zhao, P., Lin, P. & Sun, F. Thermo-optic coefficients of polymers for optical waveguide applications. Polymer 47, 4893–4896 (2006).

    Article  Google Scholar 

  40. Gralak, B., Tayeb, G. & Enoch, S. Morpho butterflies wings color modeled with lamellar grating theory. Opt. Express 9, 567578 (2001).

    Article  Google Scholar 

  41. Kinoshita, S., Yoshioka, S. & Kawagoe, K. Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. Lond. B 269, 1417–1421 (2002).

    Article  Google Scholar 

  42. Ingram, A. L. & Parker, A. R. A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990). Philos. Trans. R. Soc. Lond. B 363, 2465–2480 (2008).

    Article  Google Scholar 

  43. Yoshioka, S. & Kinoshita, S. Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly. Proc. R. Soc. Lond. B 271, 581–587 (2004).

    Article  Google Scholar 

  44. Wagner, M., Wu, S. & Ma, E. Y. Pixel architecture for thermal imaging system. US patent 7,829,854 (2010).

  45. TECHSPEC® Infrared Achromatic Lenses Provide Near Diffraction-Limited Focusing. Edmund Optics, posted 5 May 2011; available at http://optics.org/products/P000018926 (2011).

  46. Korobkin, D., Urzhumov, Y. A., Zorman, C. & Shvets, G. Far-field detection of the super-lensing effect in the mid-infrared: theory and experiment. J. Mod. Opt. 52, 2351–2364 (2005).

    Article  ADS  Google Scholar 

  47. Itkis, M. E., Borondics, F., Yu, A. & Haddon, R. C. Bolometric infrared photoresponse of suspended single-walled carbon nanotube films. Science 312, 413–416 (2006).

    Article  ADS  Google Scholar 

  48. Zhang, Z., Xiao, G. Z., Zhao, P. & Grover, C. P. Planar waveguide-based silica-polymer hybrid variable optical attenuator and its associated polymers. Appl. Opt. 44, 2402–2408 (2005).

    Article  ADS  Google Scholar 

  49. Donges, A. The coherence length of black-body radiation. Eur. J. Phys. 19, 245–249 (1998).

    Article  Google Scholar 

  50. Tsai, C.-H. et al. Characterizing coherence lengths of organic light-emitting devices using Newton's rings apparatus. Org. Electron. 11, 439–444 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge J. Cournoyer and L. Denault for SEM and TEM imaging, M. Blohm, T. Leib, E. Hall and A. Linsebigler for encouragement, and N. Dhar for fruitful discussions. This work has been supported in part from DARPA contract W911QX-09-C-0062 “Bio Inspired IR Imaging” in 2009 and from General Electric's fundamental research funds. The views and conclusions contained in this paper are those of the authors and should not be interpreted as presenting the official policies or position, either expressed or implied, of DARPA or the US Government. Citation of manufacturers or trade names does not constitute an official endorsement or approval of the use thereof.

Author information

Authors and Affiliations

Authors

Contributions

A.D.P. designed, performed and analysed experiments, and wrote the manuscript. Y.U. performed thermal analysis. C.S. and W.G.M. assisted in conducting experiments and data analysis. A.V. and S.Z. performed optical simulations. T.D. assisted in the experimental design and preparation of the manuscript. H.T.G. provided guidance on experimental design and data interpretation. R.A.P. developed the concept, designed control experiments, analysed experimental data and assisted in preparation of the manuscript.

Corresponding author

Correspondence to Radislav A. Potyrailo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1230 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pris, A., Utturkar, Y., Surman, C. et al. Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nature Photon 6, 195–200 (2012). https://doi.org/10.1038/nphoton.2011.355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing