Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spectral caustics in attosecond science

Abstract

Many intriguing phenomena in nature—from phase transitions to black holes—occur at singularities. A unique type of singularity common in wave phenomena, known as caustics1,2, links processes observed in many different branches of physics3,4. Here, we investigate the role of caustics in attosecond science and in particular the physical process behind high harmonic generation5. We experimentally demonstrate spectral focusing in high harmonic generation, showing a robust intensity enhancement of an order of magnitude over a spectral width of several harmonics. This new level of control holds promises in both scientific and technological aspects of attosecond science6,7. Moreover, our study provides a deeper insight into the basic mechanism underlying the high harmonic generation process, revealing its quantum nature8 and universal properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Singularities in the semiclassical model.
Figure 2: Experimental observation of the swallowtail caustic in HHG.

Similar content being viewed by others

References

  1. Berry, M. & Upstill, C. Catastrophe Optics: Morphologies of Caustics and their Diffraction Patterns (Elsevier, 1980).

    Google Scholar 

  2. Kravtsov, Y. A. & Orlov, Y. I. Caustics, catastrophes, and wave fields. Sov. Phys. Usp. 26, 1038–1058 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  3. Jura, M. P. et al. Unexpected features of branched flow through high-mobility two-dimensional electron gases. Nature Phys. 3, 841–845 (2007).

    Article  ADS  Google Scholar 

  4. Gaudie, B. S. Discovery of a Jupiter/Saturn analog with gravitational microlensing. Science 319, 927–930 (2008).

    Article  ADS  Google Scholar 

  5. Corkum, P. B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1993–1997 (1993).

    Article  ADS  Google Scholar 

  6. Kapteyn, H., Cohen, O., Christov, I. & Murnane, M. Harnessing attosecond science in the quest for coherent X-rays. Science 319, 775–778 (2007).

    Article  ADS  Google Scholar 

  7. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  8. Lewenstein, M., Balcou, P., Ivanov, M. Y., L'Huillier, A. & Corkum, P. Theory of high harmonics generation by low frequency laser light. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  9. Sandberg, R. et al. Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams. Phys. Rev. Lett. 99, 098103 (2007).

    Article  ADS  Google Scholar 

  10. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    Article  ADS  Google Scholar 

  11. Frolov, M. V., Manakov, N., Silaev, A. A. & Vedenskii, N. V. Analytic description of high order harmonic generation by atoms in a two color laser field. Phys. Rev. A 81, 063407 (2010).

    Article  ADS  Google Scholar 

  12. Frolov, M. V., Manakov, N. L., Sarantseva, T. S. & Starace, A. F. Analytic formulae for high harmonic generation. J. Phys. B. 42, 035601 (2009).

    Article  ADS  Google Scholar 

  13. Berry, M. V. Focusing and twinkling: critical exponents from catastrophes in non-Gaussian random short waves. J. Phys. A 10, 2061–2081 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  14. Dudovich, N. et al. Attosecond temporal gating with elliptically polarized light. Phys. Rev. Lett. 97, 253903 (2006).

    Article  ADS  Google Scholar 

  15. Gaarde, M. B., L'Huillier, A. & Lewenstein, M. Theory of high-order sum and difference frequency mixing in a strong bichromatic laser field. Phys. Rev. A 54, 4236–4248 (1996).

    Article  ADS  Google Scholar 

  16. Figueira, C., Faria, D. M., Milosevic, D. B. & Paulus, G. G. Phase dependent effects in bichromatic high order harmonic generation. Phys. Rev. A 61, 063415 (2000).

    Article  ADS  Google Scholar 

  17. Dudovich, N. et al. Measuring and controlling the birth of attosecond XUV pulses. Nature Phys. 2, 781–786 (2006).

    Article  ADS  Google Scholar 

  18. Ishii, N. et al. Quantum path selection in high-harmonic generation by a phase-locked two-color field. Opt. Express 16, 20876–20883 (2008).

    Article  ADS  Google Scholar 

  19. Liu, T. T., Kanai, T., Sekikawa, T. & Watanabe, S. Significant enhancement of high-order harmonics below 10 nm in a two-color laser field. Phys. Rev. A 73, 063823 (2006).

    Article  ADS  Google Scholar 

  20. Mauritsson, J. et al. Attosecond pulse trains generated using two color laser fields. Phys. Rev. Lett 97, 013001 (2006).

    Article  ADS  Google Scholar 

  21. Kim, I. J. et al. Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field. Phys. Rev. Lett. 94, 243901 (2005).

    Article  ADS  Google Scholar 

  22. Brugnera, L. et al. Enhancement of high harmonics generated by field steering of electrons in a two-color orthogonally polarized laser field. Opt. Lett. 35, 3994–3996 (2010).

    Article  ADS  Google Scholar 

  23. Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    Article  ADS  Google Scholar 

  24. Schafer, K. J., Yang, B., DiMauro, L. & Kulander, K. Above threshold ionization beyond the high harmonic cutoff. Phys. Rev. Lett. 70, 1599–1602 (1993).

    Article  ADS  Google Scholar 

  25. Meckel, M. et al. Laser-induced electron tunneling and diffraction. Science 320, 1478–1482 (2008).

    Article  ADS  Google Scholar 

  26. Weckenbrock, M. et al. Fully differential rates for femtosecond multi-photon double ionization of neon. Phys. Rev. Lett. 92, 213002 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Shapira and O. Kfir for useful comments, and the Minerva Foundation, the Israeli Science Foundation and the Crown Center of Photonics for financial support. O.R. acknowledges support from the Converging Technologies Fellowship of the Israeli Ministry of Science.

Author information

Authors and Affiliations

Authors

Contributions

O.R. conceived the idea. O.R. and O.P. developed the theory, performed the experiments and analysed the data. All authors contributed in building the experimental set-up and writing the manuscript.

Corresponding author

Correspondence to O. Raz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1186 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raz, O., Pedatzur, O., Bruner, B. et al. Spectral caustics in attosecond science. Nature Photon 6, 170–173 (2012). https://doi.org/10.1038/nphoton.2011.353

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.353

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing